Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4949760
1.
M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics: Res. Appl. 23, 805 (2015).
http://dx.doi.org/10.1002/pip.2637
2.
M. Kulbak, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 6, 2452 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00968
3.
S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014).
http://dx.doi.org/10.1021/jz500279b
4.
Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, and M. C. Beard, Nat. Commun. 6, 7961 (2015).
http://dx.doi.org/10.1038/ncomms8961
5.
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nat. Phys. 11, 582 (2015).
http://dx.doi.org/10.1038/nphys3357
6.
D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, Science 347, 519 (2015).
http://dx.doi.org/10.1126/science.aaa2725
7.
T. M. Brenner, D. A. Egger, A. M. Rappe, L. Kronik, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 6, 4754 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b02390
8.
P. K. Nayak and D. Cahen, Adv. Mater. 26, 1622 (2014).
http://dx.doi.org/10.1002/adma.201304620
9.
See supplementary material at http://dx.doi.org/10.1063/1.4949760 for operational voltage losses with respect to Shockley-Queisser limit (Figure S1); illustration of the relation between ferroelectricity, pyroelectricity and piezoelectricity, among all 32 classes of dielectric crystals (Figure S2); XPS elemental analysis of MAPbBr3single-crystal (100) surface (Table SI); images and dimensions of examined MAPbBr3crystals (Figure S3(a)) and the work-function position of a polished crystal and the different deposited electrodes (Figure S3(b)); schematic illustration of the Chynoweth measurement setup (Figure S4(a)) and examples for pyroelectric signals coming from an LiTaO3single crystal under similar conditions to those MAPbBr3was measured (Figures S4(b)-S4(d)); low frequency (1 Hz) measurement of MAPbBr3crystal sample with lead electrodes (Figure S5); impedance spectroscopy and resistivity results of MAPbBr3 crystals in ambient air at different temperatures (Figure S6).[Supplementary Material]
10.
C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, Adv. Mater. 26, 1584 (2014).
http://dx.doi.org/10.1002/adma.201305172
11.
I. B. Bersuker, Phys. Lett. 20, 589 (1966).
http://dx.doi.org/10.1016/0031-9163(66)91127-9
12.
R. E. Cohen, Nature 358, 136 (1992).
http://dx.doi.org/10.1038/358136a0
13.
J. M. Frost, K. T. Butler, and A. Walsh, APL Mater. 2, 081506 (2014).
http://dx.doi.org/10.1063/1.4890246
14.
S. Liu, F. Zheng, N. Z. Koocher, H. Takenaka, F. Wang, and A. M. Rappe, J. Phys. Chem. Lett. 6, 693 (2015).
http://dx.doi.org/10.1021/jz502666j
15.
T. M. Brenner, D. A. Egger, L. Kronik, G. Hodes, and D. Cahen, Nat. Rev. Mater. 1, 15007 (2016).
http://dx.doi.org/10.1038/natrevmats.2015.7
16.
R. W. Boyd, in Nonlinear Optics, 3rd ed. (Elsevier/Academic Press, Amsterdam, 2008), Chap.1.
17.
S. B. Lang, Phys. Today 58(8), 31 (2005).
http://dx.doi.org/10.1063/1.2062916
18.
K. Matyjasek and M. Orłowski, Condens. Matter Phys. 16, 31704 (2013).
http://dx.doi.org/10.5488/CMP.16.31704
19.
Z. Fan, J. Xiao, K. Sun, L. Chen, Y. Hu, J. Ouyang, K. P. Ong, K. Zeng, and J. Wang, J. Phys. Chem. Lett. 6, 1155 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00389
20.
Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, J. Phys. Chem. Lett. 5, 3335 (2014).
http://dx.doi.org/10.1021/jz501697b
21.
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
22.
Y. Kawamura, H. Mashiyama, and K. Hasebe, J. Phys. Soc. Jpn. 71, 1694 (2002).
http://dx.doi.org/10.1143/JPSJ.71.1694
23.
H. Mashiyama, Y. Kawamura, and Y. Kubota, J. Korean Phys. Soc. 51, 850 (2007).
http://dx.doi.org/10.3938/jkps.51.850
24.
C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 6804 (2015).
http://dx.doi.org/10.1021/jacs.5b01025
25.
A. G. Chynoweth, J. Appl. Phys. 27, 78 (1956).
http://dx.doi.org/10.1063/1.1722201
26.
I. Lubomirsky and O. Stafsudd, Rev. Sci. Instrum. 83, 051101 (2012).
http://dx.doi.org/10.1063/1.4709621
27.
D. Ehre, V. Lyahovitskaya, A. Tagantsev, and I. Lubomirsky, Adv. Mater. 19, 1515 (2007).
http://dx.doi.org/10.1002/adma.200602149
28.
Y. Tidhar, E. Edri, H. Weissman, D. Zohar, G. Hodes, D. Cahen, B. Rybtchinski, and S. Kirmayer, J. Am. Chem. Soc. 136, 13249 (2014).
http://dx.doi.org/10.1021/ja505556s
29.
P. Zhao, J. Xu, X. Dong, L. Wang, W. Ren, L. Bian, and A. Chang, J. Phys. Chem. Lett. 6, 2622 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01017
30.
S. Rühle and D. Cahen, J. Appl. Phys. 96, 1556 (2004).
http://dx.doi.org/10.1063/1.1767977
31.
H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003).
http://dx.doi.org/10.1016/S0925-8388(02)00972-6
32.
A. K. Tagantsev, Sov. Phys.-Usp. 30, 588 (1987).
http://dx.doi.org/10.1070/PU1987v030n07ABEH002926
33.
S. Piperno, E. Mirzadeh, E. Mishuk, D. Ehre, S. Cohen, M. Eisenstein, M. Lahav, and I. Lubomirsky, Angew. Chem., Int. Ed. 52, 6513 (2013).
http://dx.doi.org/10.1002/anie.201301836
34.
V. Sandomirsky, Y. Schlesinger, and Z. Dashevsky, Appl. Phys. Lett. 86, 133501 (2005).
http://dx.doi.org/10.1063/1.1896101
35.
E. Mishuk, I. Weissbuch, M. Lahav, and I. Lubomirsky, Cryst. Growth Des. 14, 3839 (2014).
http://dx.doi.org/10.1021/cg5003644
36.
D. Ehre and H. Cohen, Appl. Phys. Lett. 103, 052901 (2013).
http://dx.doi.org/10.1063/1.4817010
37.
S. M. Sze and K. K. Ng, in Physics of Semiconductor Devices, 3rd ed. (Wiley-Interscience, Hoboken, NJ, 2007), Chap. 3.
38.
L. Cojocaru, S. Uchida, P. V. V. Jayaweera, S. Kaneko, J. Nakazaki, T. Kubo, and H. Segawa, Chem. Lett. 44, 1750 (2015).
http://dx.doi.org/10.1246/cl.150933
39.
W. Osak and K. Tkacz-Śmiech, Appl. Phys. A: Mater. Sci. Process. 65, 439 (1997).
http://dx.doi.org/10.1007/s003390050606
40.
A. von Hippel, Rev. Mod. Phys. 22, 221 (1950).
http://dx.doi.org/10.1103/RevModPhys.22.221
41.
K. Uchino and S. Nomura, Ferroelectrics 44, 55 (1982).
http://dx.doi.org/10.1080/00150198208260644
42.
V. V. Lemanov, E. P. Smirnova, P. P. Syrnikov, and E. A. Tarakanov, Phys. Rev. B 54, 3151 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3151
43.
S. Lee, J. A. Bock, S. Trolier-McKinstry, and C. A. Randall, J. Eur. Ceram. Soc. 32, 3971 (2012).
http://dx.doi.org/10.1016/j.jeurceramsoc.2012.06.007
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4949760
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4949760
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4949760
2016-05-18
2016-12-02

Abstract

To experimentally (dis)prove ferroelectric effects on the properties of lead-halide perovskites and of solar cells, based on them, we used second-harmonic-generation spectroscopy and the periodic temperature change (Chynoweth) technique to detect the polar nature of methylammonium lead bromide (MAPbBr). We find that MAPbBr is probably centrosymmetric and definitely non-polar; thus, it cannot be ferroelectric. Whenever pyroelectric-like signals were detected, they could be shown to be due to trapped charges, likely at the interface between the metal electrode and the MAPbBr semiconductor. These results indicate that the ferroelectric effects do not affect steady-state performance of MAPbBr solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4949760.html;jsessionid=3oBVOsB80pHM8keZFcQVRJQr.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4949760&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4949760&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4949760'
Top,Right1,Right2,Right3,