Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4950826
1.
T. J. Baker, B. A. Haskell, F. Wu, J. S. Speck, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 45, L154 (2006).
http://dx.doi.org/10.1143/JJAP.45.L154
2.
K. Ohkawa, T. Watanabe, M. Sakamoto, A. Hirako, and M. Deura, J.Cryst. Growth 343, 13 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.12.075
3.
K. Kishino, K. Nagashima, and K. Yamano, Appl. Phys. Express 6, 012101 (2013).
http://dx.doi.org/10.7567/APEX.6.012101
4.
J. I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Appl. Phys.Express 7, 071003 (2014).
http://dx.doi.org/10.7567/APEX.7.071003
5.
A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Express 2, 071004 (2009).
http://dx.doi.org/10.1143/APEX.2.071004
6.
A. Nishikawa, N. Furukawa, T. Kawasaki, Y. Terai, and Y. Fujiwara, Appl. Phys. Lett. 97, 051113 (2010).
http://dx.doi.org/10.1063/1.3478011
7.
A. Nishikawa, N. Furukawa, D. Lee, K. Kawabata, T. Matsuno, R. Harada, Y. Terai, and Y. Fujiwara, MRS Proc. 1342, 9 (2012).
http://dx.doi.org/10.1557/opl.2011.994
8.
Y. Fujiwara and V. Dierolf, Jpn. J. Appl. Phys., Part 1 53, 05FA13 (2014).
http://dx.doi.org/10.7567/JJAP.53.05FA13
9.
N. Woodward, A. Nishikawa, Y. Fujiwara, and V. Dierolf, Opt. Mater. 33, 1050 (2011).
http://dx.doi.org/10.1016/j.optmat.2010.09.029
10.
D. Lee, A. Nishikawa, Y. Terai, and Y. Fujiwara, Appl. Phys. Lett. 100, 171904 (2012).
http://dx.doi.org/10.1063/1.4704920
11.
D. Lee, R. Wakamatsu, A. Koizumi, Y. Terai, and Y. Fujiwara, Jpn. J. Appl. Phys., Part 1 52, 08JM01 (2013).
http://dx.doi.org/10.7567/JJAP.52.08JM01
12.
B. Mitchell, J. Poplawsky, D. Lee, A. Koizumi, Y. Fujiwara, and V. Dierolf, J. Appl. Phys. 115, 204501 (2014).
http://dx.doi.org/10.1063/1.4879253
13.
B. Mitchell, D. Timmerman, J. Poplawsky, W. Zhu, D. Lee, R. Wakamatsu, J. Takatsu, M. Matsuda, W. Guo, K. Lorenz, E. Alves, A. Koizumi, V. Dierolf, and Y. Fujiwara, Sci. Rep. 6, 18808 (2016).
http://dx.doi.org/10.1038/srep18808
14.
K. Lorenz, E. Alves, I. S. Roqan, K. P. O’Donnell, A. Nishikawa, Y. Fujiwara, and M. Boćkowski, Appl. Phys. Lett. 97, 111911 (2010).
http://dx.doi.org/10.1063/1.3489103
15.
N. Fichtenbaum, T. Mates, S. Keller, S. DenBaars, and U. Mishra, J. Cryst. Growth 310, 1124 (2008).
http://dx.doi.org/10.1016/j.jcrysgro.2007.12.051
16.
S. Cruz, S. Keller, T. Mates, U. Mishra, and S. DenBaars, J. Cryst. Growth 311, 3817 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.02.051
17.
A. M. Armstrong, K. Kelchner, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 232108 (2013).
http://dx.doi.org/10.1063/1.4841575
18.
Z. Fleischman, C. Munasinghe, A. J. Steckl, A. Wakahara, J. Zavada, and V. Dierolf, Appl. Phys. B 97, 607 (2009).
http://dx.doi.org/10.1007/s00340-009-3605-x
19.
A. Uedono, S. Ishibashi, T. Ohdaira, and R. Suzuki, J. Cryst. Growth 311, 3075 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2009.01.051
20.
A. Uedono, S. Ishibashi, N. Oshima, and R. Suzuki, Jpn. J. Appl. Phys., Part 1 52, 08JJ02 (2013).
http://dx.doi.org/10.7567/JJAP.52.08JJ02
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4950826
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4950826
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4950826
2016-05-17
2016-12-06

Abstract

The influence of growth temperature on the surface morphology and luminescence properties of Eu-doped GaN layers grown by organometallic vapor phase epitaxy was investigated. By using a Eu source that does not contain oxygen in its molecular structure, and varying the growth temperature, the local defect environment around the Eu3+ ions was manipulated, yielding a higher emission intensity from the Eu3+ ions and a smoother sample surface. The optimal growth temperature was determined to be 960 °C and was used to fabricate a GaN-based red light-emitting diode with a significantly higher output power.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4950826.html;jsessionid=0aW9LDUE_3kZjuG99WvAzdyY.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4950826&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4950826&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4950826'
Top,Right1,Right2,Right3,