Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
G. S. Nolas, J. Poon, and M. Kanatzidis, “Recent developments in bulk thermoelectric materials,” MRS Bull. 31, 199205 (2006).
J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, “Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling,” Phys. Rev. X 4, 011019 (2014).
A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder et al., “Commentary: The Materials Project: A materials genome approach to accelerating materials innovation,” APL Mater. 1, 011002 (2013).
I. Terasaki, Y. Sasago, and K. Uchinokura, “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, R12685R12687 (1997).
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor La[O1 − xFx]FeAs (x = 0.05–0.12) with Tc = 26 K,” J. Am. Chem. Soc. 130, 32963297 (2008).
M. W. Gaultois, T. D. Sparks, C. K. H. Borg, R. Seshadri, W. D. Bonificio, and D. R. Clarke, “Data-driven review of thermoelectric materials: Performance and resource considerations,” Chem. Mater. 25, 29112920 (2013).
B. Meredig, A. Agrawal, S. Kirklin, J. Saal, J. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, “Combinatorial screening for new materials in unconstrained composition space with machine learning,” Phys. Rev. B 89, 094104 (2014).
B. Meredig and C. Wolverton, “Dissolving the periodic table in cubic zirconia: Data mining to discover chemical trends,” Chem. Mater. 26, 19851991 (2014).
A. Jain, Y. Shin, and K. A. Persson, “Computational predictions of energy materials using density functional theory,” Nat. Rev. Mater. 1, 15004 (2016).
G. Hautier, A. Jain, and S. P. Ong, “From the computer to the laboratory: Materials discovery and design using first-principles calculations,” J. Mater. Sci. 47, 73177340 (2012).
J. Carrete, N. Mingo, S. Wang, and S. Curtarolo, “Nanograined half-Heusler semiconductors as advanced thermoelectrics: An ab initio high-throughput statistical study,” Adv. Funct. Mater. 24, 74277432 (2014).
S. Bhattacharya and G. K. H. Madsen, “High-throughput exploration of alloying as design strategy for thermoelectrics,” Phys. Rev. B 92 (2015).
P. Gorai, P. Parilla, E. S. Toberer, and V. Stevanovic, “Computational exploration of the binary A1B1 chemical space for thermoelectric performance,” Chem. Mater. 27, 62136221 (2015).
H. Zhu, G. Hautier, U. Aydemir, Z. M. Gibbs, G. Li, S. Bajaj, J.-H. Pöhls, D. Broberg, W. Chen, A. Jain, M. A. White, M. Asta, G. J. Snyder, K. Persson, and G. Ceder, “Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening,” J. Mater. Chem. C 3, 1055410565 (2015).
W. Chen, J.-H. Pöhls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z. M. Gibbs, H. Zhu, M. Asta, G. J. Snyder, B. Meredig, M. A. White, K. Persson, and A. Y. Jain, “Understanding thermoelectric properties from high-throughput calculations: Trends, insights, and comparisons with experiment,” J. Mater. Chem. C 4, 4414 (2016).
G. K. H. Madsen and D. J. Singh, “Boltztrap. a code for calculating band-structure dependent quantities,” Comput. Phys. Commun. 175, 6771 (2006).
W. Khan, S. Borek, and J. Minar, “Correlation between the electronic structure, effective mass and thermoelectric properties of rare earth tellurides Ba2MY Te5 (M = Ga, In),” RSC Adv. 5, 5146151469 (2015).
K. Rajan, “Materials informatics: The materials ‘gene’ and big data,” Annu. Rev. Mater. Res. 45, 153169 (2015).
P. V. Balachandran, J. Theiler, J. M. Rondinelli, and T. Lookman, “Materials prediction via classification learning,” Sci. Rep. 5, 13285 (2015).
Z.-K. Liu, L.-Q. Chen, and K. Rajan, “Linking length scales via materials informatics,” JOM 58, 4250 (2006).
K. Rajan, “Materials informatics,” Mater. Today 8, 3845 (2005).
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, “Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis,” Comput. Mater. Sci. 68, 314319 (2013).
S. Curtarolo, G. L. Hart, M. B. Nardelli, N. Mingo, S. Sanvito, and O. Levy, “The high-throughput highway to computational materials design,” Nat. Mater. 12, 191201 (2013).
L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Scheffler, “Big data of materials science: Critical role of the descriptor,” Phys. Rev. Lett. 114, 105503 (2015).
K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von Lilienfeld, K.-R. Müller, and A. Tkatchenko, “Machine learning predictions of molecular properties: Accurate many-body potentials and non-locality in chemical space,” J. Phys. Chem. Lett. 6, 2326 (2015).
L. Breiman, “Random forests,” Mach. Learn. 45, 532 (2001).
B. Meredig, “Machine learning for the materials scientist, part 2: Feature engineering & model building (2015),” see (last accessed May 23, 2016).
See supplementary material at for X-ray diffraction patterns and backscatter electron micrographs collected from the prepared materials.[Supplementary Material]
P. Gorai, D. Gao, B. Ortiz, S. Miller, S. A. Barnett, T. Mason, Q. Lv, V. Stevanovic, and E. S. Toberer, “Te design lab: A virtual laboratory for thermoelectric material design,” Comput. Mater. Sci. 112, 368376 (2016).
H. Chahboun, D. Groult, M. Hervieu, and B. Raveau, “β-NbPO5 and β-TaPO5: Bronzoïds, second members of the monophosphate tungsten bronze series (PO2)4(WO3)2m,” J. Solid State Chem. 65, 331342 (1986).
H. Chahboun, D. Groult, and B. Raveau, “TaVO5, a novel derivative of the series of monophosphate tungsten bronzes (PO2)4(WO3)2m,” Mater. Res. Bull. 23, 805812 (1988).
M. Greenblatt, “Phosphate tungsten bronzes: A new family of quasi-low-dimensional metallic oxides,” Int. J. Mod. Phys. B 07, 39373971 (1993).
X. Wang, Q. Huang, J. Deng, R. Yu, J. Chen, and X. Xing, “Phase transformation and negative thermal expansion in TaVO5,” Inorg. Chem. 50, 26852690 (2011).
Q. Guo, M. Chan, B. A. Kuropatwa, and H. Kleinke, “Enhanced thermoelectric properties of variants of Tl9SbTe6 and Tl9BiTe6,” Chem. Mater. 25, 40974104 (2013).
D. Parker and D. J. Singh, “Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials,” Sci. Technol. Adv. Mater. 14, 055003 (2013).
P. Sun, N. Oeschler, S. Johnsen, B. B. Iversen, and F. Steglich, “Huge thermoelectric power factor: FeSb2 versus FeAs2 and RuSb2,” Appl. Phys. Express 2, 091102 (2009).
L. E. Depero and L. Sangaletti, “Cation sublattice and coordination polyhedra in ABO4 type of structures,” J. Solid State Chem. 129, 8291 (1997).
K. M. Ok, N. Bhuvanesh, and P. Halasyamani, “SbSbxM1−xO4 (M = NbV or TaV): Solid solution behavior and second-harmonic generating properties,” J. Solid State Chem. 161, 5762 (2001).
A. C. Komarek, T. Möller, M. Isobe, Y. Drees, H. Ulbrich, M. Azuma, M. T. Fernández-Díaz, A. Senyshyn, M. Hoelzel, G. André, Y. Ueda, M. Grüninger, and M. Braden, “Magnetic order, transport and infrared optical properties in the ACrO3 system (A = Ca, Sr, and Pb),” Phys. Rev. B 84, 125114 (2011).
Y. X. Ni, J. M. Hughes, and A. N. Mariano, “Crystal chemistry of the monazite and xenotime structures,” Am. Mineral. 80, 2126 (1995).
M. R. Winter and D. R. Clarke, “Oxide materials with low thermal conductivity,” J. Am. Ceram. Soc. 90, 533540 (2007).
A. V. Tkachuk and A. Mar, “Structure and physical properties of ternary rare-earth cobalt bismuth intermetallics RE12Co5Bi (RE = Y, Gd, Tb, Dy, Ho, Er, Tm),” Inorg. Chem. 44, 22722281 (2005).
G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, “The effect of rare-earth filling on the lattice thermal conductivity of skutterudites,” J. Appl. Phys. 79, 40024008 (1996).
T. Graf, C. Felser, and S. S. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39, 150 (2011).
J. E. Douglas, C. S. Birkel, M.-S. Miao, C. J. Torbet, G. D. Stucky, T. M. Pollock, and R. Seshadri, “Enhanced thermoelectric properties of bulk TiNiSn via formation of a TiNi2Sn second phase,” Appl. Phys. Lett. 101, 163514 (2012).
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163167 (2008).
G. Grimvall, Thermophys. Prop. Mater. (Elsevier, 1999), pp. 255285.
P. Jacobsson and B. Sundqvist, “Thermal conductivity and electrical resistivity of gadolinium as functions of pressure and temperature,” Phys. Rev. B 40, 95419551 (1989).
T. M. Tritt, “Thermal conductivity: Theory, properties, and applications,” in Physics of Solids and Liquids (Springer, 2004).

Data & Media loading...


Article metrics loading...



The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete , Phys. Rev. X , 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine ( for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, CoBi ( = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic and block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into ; we selected CoBi for this study due to its interesting chemical composition and known facile synthesis.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd