Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/5/10.1063/1.4952712
1.
M. V. Reddy, G. V. Subba Roa, and B. V. R. Chowdan, Chem. Rev. 113, 53645457 (2013).
http://dx.doi.org/10.1021/cr3001884
2.
N. S. Porter, H. Wu, Z. Quan, and J. Fang, Acc. Chem. Res. 46, 18671877 (2013).
http://dx.doi.org/10.1021/ar3002238
3.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 90199038 (2013).
http://dx.doi.org/10.1021/ic401215x
4.
T. T. Tan, S. T. Selvan, L. Zhao, S. Gao, and J. Y. Ying, Chem. Mater. 19(13), 31123117 (2007).
http://dx.doi.org/10.1021/cm061974e
5.
S. S. Lo, T. Mirkovic, C.-H. Chuang, C. Burda, and G. D. Scholes, Adv. Mater. 23(2), 180197 (2011).
http://dx.doi.org/10.1002/adma.201002290
6.
J.-D. Grunwaldt, J. B. Wagner, and R. E. Dunin-Borkowski, ChemCatChem 5(1), 6280 (2013).
http://dx.doi.org/10.1002/cctc.201200356
7.
R. J. MacFarlane and C. A. Mirkin, ChemPhysChem 11(15), 32153217 (2010).
http://dx.doi.org/10.1002/cphc.201000389
8.
S. Chaudhary and S. K. Mehta, J. Nanosci. Nanotechnol. 14(2), 16581674 (2014).
http://dx.doi.org/10.1166/jnn.2014.9128
9.
T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, and J. F. Mitchell, Phys. Rev. Lett. 103, 047601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.047601
10.
L. Cronin and A. Mueller, Chem. Soc. Rev. 41(22), 73337334 (2012).
http://dx.doi.org/10.1039/c2cs90087d
11.
C. G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 113 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.08.021
12.
G. Hautier, A. Jain, and S. P. Ong, J. Mater. Res. 47(21), 73177340 (2012).
http://dx.doi.org/10.1007/s10853-012-6424-0
13.
A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley, and A. Zunger, J. Am. Chem. Soc. 135(27), 1004810054 (2013).
http://dx.doi.org/10.1021/ja311599g
14.
S. Hao, L.-D. Zhao, C.-Q. Chen, V. P. Dravid, M. G. Kanatzidis, and C. M. Wolverton, J. Am. Chem. Soc. 136(4), 16281635 (2014).
http://dx.doi.org/10.1021/ja411857y
15.
R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier, and A. Zunger, Nat. Chem. 7(4), 308316 (2015).
http://dx.doi.org/10.1038/nchem.2207
16.
N. J. Ghinire, A. S. Botana, D. Phelan, H. Zheng, and J. F. Mitchell, J. Phys.: Condens. Matter 28, 235601 (2016).
http://dx.doi.org/10.1088/0953-8984/28/23/235601
17.
A. Jian, S. P. Ong, G. Hauber, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013).
http://dx.doi.org/10.1063/1.4812323
18.
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314319 (2013).
http://dx.doi.org/10.1016/j.commatsci.2012.10.028
19.
S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Comput. Mater. Sci. 58, 218226 (2012).
http://dx.doi.org/10.1016/j.commatsci.2012.02.005
20.
M. E. Eberhart and D. P. Clougherty, Nat. Mat. 3, 659661 (2004).
http://dx.doi.org/10.1038/nmat1229
21.
M. Jansen and J. C. Schon, Angew. Chem., Int. Ed. 45(21), 34063412 (2006).
http://dx.doi.org/10.1002/anie.200504510
22.
R. Xu, W. Pang, and Q. Huo, Modern Inorganic Synthetic Chemistry (Elsevier, 2011).
23.
G. A. Papoian and R. Hoffmann, Angew. Chem., Int. Ed. 39(14), 24082448 (2000).
http://dx.doi.org/10.1002/1521-3773(20000717)39:14<2408::aid-anie2408>3.0.co;2-u
24.
I. D. Brown, in Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky (Academic Press, New York, 1981), Vol. 2, pp. 152.
25.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
26.
D. Gebauer and H. Cölfen, Nano Today 6, 564584 (2011).
http://dx.doi.org/10.1016/j.nantod.2011.10.005
27.
G. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H. Colfen, Chem. Soc. Rev. 43, 23482371 (2014).
http://dx.doi.org/10.1039/c3cs60451a
28.
S. J. L. Billinge and I. Levin, Science 316(5824), 561565 (2007).
http://dx.doi.org/10.1126/science.1135080
29.
C. McMillen, J. Kolis, C. Liu, A. Kaminski, and J. Ballato, in Optics InfoBase Conference Papers, 2010.
30.
T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergammon, Amsterdam, 2003).
31.
S. J. L. Billinge and M. G. Kanatzidis, Chem. Commun. 2004(7), 749760.
http://dx.doi.org/10.1039/b309577k
32.
L. Soderholm, S. Skanthakumar, and J. Neuefeind, Anal. Bioanal. Chem. 383(1), 4855 (2005).
http://dx.doi.org/10.1007/s00216-005-3322-1
33.
S. Skanthakumar and L. Soderholm, Mater. Res. Soc. Symp. Proc. 893, 411416 (2005).
http://dx.doi.org/10.1557/proc-0893-jj05-18
34.
L. Soderholm, P. M. Almond, S. Skanthakumar, R. E. Wilson, and P. C. Burns, Angew. Chem., Int. Ed. 47(2), 298302 (2008).
http://dx.doi.org/10.1002/anie.200704420
35.
A. Clearfield, Rev. Pure Appl. Chem. 14, 91108 (1964).
36.
A. Clearfield, J. Mater. Res. 5, 161162 (1990).
http://dx.doi.org/10.1557/JMR.1990.0161
37.
A. Clearfield and P. A. Vaughan, Acta Crystallogr. 9, 555558 (1956).
http://dx.doi.org/10.1107/S0365110X56001558
38.
Y.-J. Hu, K. E. Knope, S. Skanthakumar, M. G. Kanatzidis, J. F. Mitchell, and L. Soderholm, J. Am. Chem. Soc. 135(38), 1424014248 (2013).
http://dx.doi.org/10.1021/ja405555h
39.
S. Skanthakumar, M. R. Antonio, and L. Soderholm, Inorg. Chem. 47(11), 45914595 (2008).
http://dx.doi.org/10.1021/ic702478w
40.
L. Soderholm, S. Skanthakumar, and R. E. Wilson, J. Phys. Chem. A 113, 63916397 (2009).
http://dx.doi.org/10.1021/jp9012366
41.
A. Kalaji, S. Skanthakumar, M. G. Kanatzidis, J. F. Mitchell, and L. Soderholm, Inorg. Chem. 53(12), 63216328 (2014).
http://dx.doi.org/10.1021/ic500938k
42.
A. Kalaji and L. Soderholm, Chem. Commun. 50, 997999 (2014).
http://dx.doi.org/10.1039/C3CC48167K
43.
A. Kalaji and L. Soderholm, Inorg. Chem. 53(20), 1125211260 (2014).
http://dx.doi.org/10.1021/ic501841e
44.
P. C. Canfield and Z. Fisk, Philos. Mag. B 65(6), 11171123 (1992).
http://dx.doi.org/10.1080/13642819208215073
45.
M. G. Kanatzidis, Semicond. Semimetals 69, 51100 (2001).
http://dx.doi.org/10.1016/s0080-8784(01)80149-6
46.
M. G. Kanatzidis, R. Pottgen, and W. Jeitschko, Angew. Chem., Int. Ed. 44(43), 69967023 (2005).
http://dx.doi.org/10.1002/anie.200462170
47.
D. P. Shoemaker, Y.-J. Hu, D. Y. Chung, G. J. Halder, P. J. Chupas, L. Soderholm, J. F. Mitchell, and M. G. Kanatzidis, Proc. Natl. Acad. Sci. U. S. A. 111(30), 1092210927 (2014).
http://dx.doi.org/10.1073/pnas.1406211111
48.
D. P. Shoemaker, D. Y. Chung, J. F. Mitchell, T. H. Bray, L. Soderholm, P. J. Chupas, and M. G. Kanatzidis, J. Am. Chem. Soc. 134(22), 94569463 (2012).
http://dx.doi.org/10.1021/ja303047e
49.
D. Gebauer, A. Volkel, and H. Colfen, Science 322, 18191822 (2008).
http://dx.doi.org/10.1126/science.1164271
50.
J. Baumgartner, A. Dey, P. H. H. Bomans, C. Le Coadou, P. Fratzl, N. A. J. M. Sommerdijk, and D. Faivre, Nat. Mater. 2013, 310314.
http://dx.doi.org/10.1038/nmat3558
51.
A. S. Keys, S. C. Iacovella, and S. C. Glotzer, Annu. Rev. Condens. Matter Phys. 2, 263285 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140526
52.
A. S. Keys, S. C. Iacovella, and S. C. Glotzer, J. Comput. Phys. 230, 64366463 (2011).
http://dx.doi.org/10.1016/j.jcp.2011.04.017
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/5/10.1063/1.4952712
Loading
/content/aip/journal/aplmater/4/5/10.1063/1.4952712
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/5/10.1063/1.4952712
2016-05-26
2016-12-04

Abstract

Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways . We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/5/1.4952712.html;jsessionid=H7QlTUw4_SfFcfepTPzneAy0.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/5/10.1063/1.4952712&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/5/10.1063/1.4952712&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/5/10.1063/1.4952712'
Top,Right1,Right2,Right3,