Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. V. Reddy, G. V. Subba Roa, and B. V. R. Chowdan, Chem. Rev. 113, 53645457 (2013).
N. S. Porter, H. Wu, Z. Quan, and J. Fang, Acc. Chem. Res. 46, 18671877 (2013).
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 90199038 (2013).
T. T. Tan, S. T. Selvan, L. Zhao, S. Gao, and J. Y. Ying, Chem. Mater. 19(13), 31123117 (2007).
S. S. Lo, T. Mirkovic, C.-H. Chuang, C. Burda, and G. D. Scholes, Adv. Mater. 23(2), 180197 (2011).
J.-D. Grunwaldt, J. B. Wagner, and R. E. Dunin-Borkowski, ChemCatChem 5(1), 6280 (2013).
R. J. MacFarlane and C. A. Mirkin, ChemPhysChem 11(15), 32153217 (2010).
S. Chaudhary and S. K. Mehta, J. Nanosci. Nanotechnol. 14(2), 16581674 (2014).
T. Varga, A. Kumar, E. Vlahos, S. Denev, M. Park, S. Hong, T. Sanehira, Y. Wang, C. J. Fennie, S. K. Streiffer, X. Ke, P. Schiffer, V. Gopalan, and J. F. Mitchell, Phys. Rev. Lett. 103, 047601 (2009).
L. Cronin and A. Mueller, Chem. Soc. Rev. 41(22), 73337334 (2012).
C. G. Granqvist, Sol. Energy Mater. Sol. Cells 99, 113 (2012).
G. Hautier, A. Jain, and S. P. Ong, J. Mater. Res. 47(21), 73177340 (2012).
A. Zakutayev, X. Zhang, A. Nagaraja, L. Yu, S. Lany, T. O. Mason, D. S. Ginley, and A. Zunger, J. Am. Chem. Soc. 135(27), 1004810054 (2013).
S. Hao, L.-D. Zhao, C.-Q. Chen, V. P. Dravid, M. G. Kanatzidis, and C. M. Wolverton, J. Am. Chem. Soc. 136(4), 16281635 (2014).
R. Gautier, X. Zhang, L. Hu, L. Yu, Y. Lin, T. O. L. Sunde, D. Chon, K. R. Poeppelmeier, and A. Zunger, Nat. Chem. 7(4), 308316 (2015).
N. J. Ghinire, A. S. Botana, D. Phelan, H. Zheng, and J. F. Mitchell, J. Phys.: Condens. Matter 28, 235601 (2016).
A. Jian, S. P. Ong, G. Hauber, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A. Persson, APL Mater. 1, 011002 (2013).
S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314319 (2013).
S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Comput. Mater. Sci. 58, 218226 (2012).
M. E. Eberhart and D. P. Clougherty, Nat. Mat. 3, 659661 (2004).
M. Jansen and J. C. Schon, Angew. Chem., Int. Ed. 45(21), 34063412 (2006).
R. Xu, W. Pang, and Q. Huo, Modern Inorganic Synthetic Chemistry (Elsevier, 2011).
G. A. Papoian and R. Hoffmann, Angew. Chem., Int. Ed. 39(14), 24082448 (2000).<2408::aid-anie2408>;2-u
I. D. Brown, in Structure and Bonding in Crystals, edited by M. O’Keeffe and A. Navrotsky (Academic Press, New York, 1981), Vol. 2, pp. 152.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
D. Gebauer and H. Cölfen, Nano Today 6, 564584 (2011).
G. Gebauer, M. Kellermeier, J. D. Gale, L. Bergstrom, and H. Colfen, Chem. Soc. Rev. 43, 23482371 (2014).
S. J. L. Billinge and I. Levin, Science 316(5824), 561565 (2007).
C. McMillen, J. Kolis, C. Liu, A. Kaminski, and J. Ballato, in Optics InfoBase Conference Papers, 2010.
T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks: Structural Analysis of Complex Materials (Pergammon, Amsterdam, 2003).
S. J. L. Billinge and M. G. Kanatzidis, Chem. Commun. 2004(7), 749760.
L. Soderholm, S. Skanthakumar, and J. Neuefeind, Anal. Bioanal. Chem. 383(1), 4855 (2005).
S. Skanthakumar and L. Soderholm, Mater. Res. Soc. Symp. Proc. 893, 411416 (2005).
L. Soderholm, P. M. Almond, S. Skanthakumar, R. E. Wilson, and P. C. Burns, Angew. Chem., Int. Ed. 47(2), 298302 (2008).
A. Clearfield, Rev. Pure Appl. Chem. 14, 91108 (1964).
A. Clearfield, J. Mater. Res. 5, 161162 (1990).
A. Clearfield and P. A. Vaughan, Acta Crystallogr. 9, 555558 (1956).
Y.-J. Hu, K. E. Knope, S. Skanthakumar, M. G. Kanatzidis, J. F. Mitchell, and L. Soderholm, J. Am. Chem. Soc. 135(38), 1424014248 (2013).
S. Skanthakumar, M. R. Antonio, and L. Soderholm, Inorg. Chem. 47(11), 45914595 (2008).
L. Soderholm, S. Skanthakumar, and R. E. Wilson, J. Phys. Chem. A 113, 63916397 (2009).
A. Kalaji, S. Skanthakumar, M. G. Kanatzidis, J. F. Mitchell, and L. Soderholm, Inorg. Chem. 53(12), 63216328 (2014).
A. Kalaji and L. Soderholm, Chem. Commun. 50, 997999 (2014).
A. Kalaji and L. Soderholm, Inorg. Chem. 53(20), 1125211260 (2014).
P. C. Canfield and Z. Fisk, Philos. Mag. B 65(6), 11171123 (1992).
M. G. Kanatzidis, Semicond. Semimetals 69, 51100 (2001).
M. G. Kanatzidis, R. Pottgen, and W. Jeitschko, Angew. Chem., Int. Ed. 44(43), 69967023 (2005).
D. P. Shoemaker, Y.-J. Hu, D. Y. Chung, G. J. Halder, P. J. Chupas, L. Soderholm, J. F. Mitchell, and M. G. Kanatzidis, Proc. Natl. Acad. Sci. U. S. A. 111(30), 1092210927 (2014).
D. P. Shoemaker, D. Y. Chung, J. F. Mitchell, T. H. Bray, L. Soderholm, P. J. Chupas, and M. G. Kanatzidis, J. Am. Chem. Soc. 134(22), 94569463 (2012).
D. Gebauer, A. Volkel, and H. Colfen, Science 322, 18191822 (2008).
J. Baumgartner, A. Dey, P. H. H. Bomans, C. Le Coadou, P. Fratzl, N. A. J. M. Sommerdijk, and D. Faivre, Nat. Mater. 2013, 310314.
A. S. Keys, S. C. Iacovella, and S. C. Glotzer, Annu. Rev. Condens. Matter Phys. 2, 263285 (2011).
A. S. Keys, S. C. Iacovella, and S. C. Glotzer, J. Comput. Phys. 230, 64366463 (2011).

Data & Media loading...


Article metrics loading...



Synthesis of inorganic extended solids is a critical starting point from which real-world functional materials and their consequent technologies originate. However, unlike the rich mechanistic foundation of organic synthesis, with its underlying rules of assembly (e.g., functional groups and their reactivities), the synthesis of inorganic materials lacks an underpinning of such robust organizing principles. In the latter case, any such rules must account for the diversity of chemical species and bonding motifs inherent to inorganic materials and the potential impact of mass transport on kinetics, among other considerations. Without such assembly rules, there is less understanding, less predictive power, and ultimately less control of properties. Despite such hurdles, developing a mechanistic understanding for synthesis of inorganic extended solids would dramatically impact the range of new material discoveries and resulting new functionalities, warranting a broad call to explore what is possible. Here we discuss our recent approaches toward a mechanistic framework for the synthesis of bulk inorganic extended solids, in which either embryonic atomic correlations or fully developed phases in solutions or melts can be identified and tracked during product selection and crystallization. The approach hinges on the application of high-energy x-rays, with their penetrating power and large Q-range, to explore reaction pathways . We illustrate this process using two examples: directed assembly of Zr clusters in aqueous solution and total phase awareness during crystallization from K–Cu–S melts. These examples provide a glimpse of what we see as a larger vision, in which large scale simulations, data-driven science, and studies of atomic correlations combine to accelerate materials discovery and synthesis, based on the assembly of well-defined, prenucleated atomic correlations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd