Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Fähler, U. K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe, “Caloric effects in ferroic materials: New concepts for cooling,” Adv. Eng. Mater. 14, 1019 (2012).
2.E. Lovell, A. M. Pereira, A. D. Caplin, J. Lyubina, and L. F. Cohen, “Dynamics of the first-order metamagnetic transition in magnetocaloric La(Fe,Si)(13): Reducing hysteresis,” Adv. Energy Mater. 5, 1401639 (2015).
3.N. K. Sun, W. B. Cui, D. Li, D. Y. Geng, F. Yang, and Z. D. Zhang, “Giant room-temperature magnetocaloric effect in Mn(1-x)Cr(x)As,” Appl. Phys. Lett. 92, 072504 (2008).
4.V. Basso, M. Kupferling, C. Curcio, C. Bennati, A. Barzca, M. Katter, M. Bratko, E. Lovell, J. Turcaud, and L. F. Cohen, “Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)(13)-H compounds,” J. Appl. Phys. 118, 053907 (2015).
5.A. Planes, L. Manosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic heusler alloys,” J. Phys.: Condens. Matter 21, 233201 (2009).
6.H. Xuan, F. Chen, P. Han, D. Wang, and Y. Du, “Effect of Co addition on the martensitic transformation and magnetocaloric effect of Ni-Mn-Al ferromagnetic shape memory alloys,” Intermetallics 47, 3135 (2014).
7.T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni − Mn − Sn alloys,” Phys. Rev. B 72, 014412 (2005).
8.T. Krenke, E. Duman, M. Acet, E. Wassermann, X. Moya, L. Manosa, and A. Planes, “Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys,” Nat. Mater. 4, 450 (2005).
9.A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Giant inverse magnetocaloric effect near room temperature in Co substituted nimnsb heusler alloys,” J. Phys. D: Appl. Phys. 42, 035009 (2009).
10.A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V. Khovailo, V. Koledov, R. Levitin, V. Shavrov, and T. Takagi, “Magnetocaloric effect and magnetization in a Ni-Mn-Ga heusler alloy in the vicinity of magnetostructural transition,” J. Magn. Magn. Mater. 272-276, 20402042 (2004).
11.V. K. Pecharsky and K. A. Gschneidner, “Giant magnetocaloric effect in Gd5 (Si2Ge2),” Phys. Rev. Lett. 78, 44944497 (1997).
12.C. Bahl, “Developing a magnetocaloric domestic heat pump,” in Proceedings of the 6th IIF-IIR International Conference on Magnetic Refrigeration (IIF-IIR, 2014).
13.Y. Zhang, R. Hughes, J. Britten, W. Gong, J. Preston, G. Botton, and M. Niewczas, “Epitaxial Ni–Mn–Ga films derived through high temperature in situ depositions,” Smart Mater. Struct. 18, 025019 (2009).
14.J. Cui, Y. S. Chu, O. O. Famodu, Y. Furuya, J. Hattrick-Simpers, R. D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi, “Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width,” Nat. Mater. 5, 286290 (2006).
15.M. Trassinelli, M. Marangolo, M. Eddrief, V. H. Etgens, V. Gafton, S. Hidki, E. Lacaze, E. Lamour, C. Prigent, J.-P. Rozet, S. Steydli, Y. Zheng, and D. Vernhet, “Suppression of the thermal hysteresis in magnetocaloric MnAs thin film by highly charged ion bombardment,” Appl. Phys. Lett. 104, 081906 (2014).
16.N. Zhou, C. Shen, M. F.-X. Wagner, G. Eggeler, M. J. Mills, and Y. Wang, “Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni,” Acta Mater. 58, 66856694 (2010).
17.T. Gottschall, K. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni-Mn-In-Co,” Appl. Phys. Lett. 106, 021901 (2015).
18.A. Diestel, R. Niemann, B. Schleicher, L. Schultz, and S. Fähler, “Field-temperature phase diagrams of freestanding and substrate-constrained epitaxial Ni-Mn-Ga-Co films for magnetocaloric applications,” J. Appl. Phys. 118, 023908 (2015).
19.J. Pons, V. Chernenko, R. Santamarta, and E. Cesari, “Crystal structure of martensitic phases in Ni–Mn–Ga shape memory alloys,” Acta Mater. 48, 3027 (2000).
20.P. Klaer, H. C. Herper, P. Entel, R. Niemann, L. Schultz, S. Faehler, and H. J. Elmers, “Electronic structure of the austenitic and martensitic state of magnetocaloric Ni-Mn-In heusler alloy films,” Phys. Rev. B 88, 174414 (2013).
21.V. Chernenko, V. L’vov, J. Pons, and E. Cesari, “Superelasticity in high-temperature Ni–Mn–Ga alloys,” J. Appl. Phys. 93, 2394 (2003).
22.O. Heczko, M. Thomas, R. Niemann, L. Schultz, and S. Fähler, “Magnetically induced martensite transition in freestanding epitaxial Ni-Mn-Ga films,” Appl. Phys. Lett. 94, 152513 (2009).
23.V. Chernenko, J. Pons, E. Cesari, and K. Ishikawa, “Stress-temperature phase diagram of a ferromagnetic Ni–Mn–Ga shape memory alloy,” Acta Mater. 53, 5071 (2005).
24.R. Niemann, J. Baro, O. Heczko, L. Schultz, S. Fähler, E. Vives, L. Manosa, and A. Planes, “Tuning avalanche criticality: Acoustic emission during the martensitic transformation of a compressed Ni-Mn-Ga single crystal,” Phys. Rev. B 86, 214101 (2012).
25.X. G. Ma and K. Komvopoulos, “In situ transmission electron microscopy and nanoindentation studies of phase transformation and pseudoelasticity of shape-memory titanium-nickel films,” J. Mater. Res. 20, 18081813 (2005).
26.Y. Liu, I. Karaman, H. Wang, and X. Zhang, “Two types of martensitic phase transformations in magnetic shape memory alloys by in-situnanoindentation studies,” Adv. Mater. 26, 38933898 (2014).
27.K. Ullakko, J. Huang, C. Kantner, R. O’Handley, and V. Kokorin, “Large magnetic-field-induced strains in Ni2MnGa single crystals,” Appl. Phys. Lett. 69, 1966 (1996).
28.A. Sozinov, N. Lanska, A. Soroka, and W. Zou, “12% magnetic field-induced strain in Ni-Mn-Ga-based non-modulated martensite,” Appl. Phys. Lett. 102, 021902 (2013).
29.L. Straka, H. Hänninen, and O. Heczko, “Temperature dependence of single twin boundary motion in Ni–Mn–Ga martensite,” Appl. Phys. Lett. 98, 141902 (2011).
30.A. Roytburd, “Elastic domains and polydomain phases in solids,” Phase Transitions 45, 1 (1993).
31.S. Kaufmann, R. Niemann, T. Thersleff, U. Rößler, O. Heczko, J. Buschbeck, B. Holzapfel, L. Schultz, and S. Fähler, “Modulated martensite: Why it forms and why it deforms easily,” New J. Phys. 13, 053029 (2011).
32.S. Kaufmann, U. Rößler, O. Heczko, M. Wuttig, J. Buschbeck, L. Schultz, and S. Fähler, “Adaptive modulations of martensites,” Phys. Rev. Lett. 104, 145702 (2010).
33.A. Khachaturyan, S. Shapiro, and S. Semenovskaya, “Adaptive phase formation in martensitic transformation,” Phys. Rev. B 43, 10832 (1991).
34.R. Niemann, U. K. Rößler, M. E. Gruner, O. Heczko, L. Schultz, and S. Fähler, “The role of adaptive martensite in magnetic shape memory alloys,” Adv. Eng. Mater. 14, 562581 (2012).
35.Z. Li, “Study on crystallographic features of Ni-Mn-Ga ferromagnetic shape memory alloys,” Ph.D.  dissertation, Université de Lorraine und Northeastern University, 2011.
36.A. Backen, S. Kauffmann-Weiss, C. Behler, A. Diestel, R. Niemann, A. Kauffmann, J. Freudenberger, L. Schultz, and S. Fähler, “Mesoscopic twin boundaries in epitaxial Ni-Mn-Ga films,” e-print arXiv:1311.5428 [cond-mat.mtrl-sci] (2013).
37.A. Backen, S. Yeduru, M. Kohl, S. Baunack, A. Diestel, B. Holzapfel, L. Schultz, and S. Fähler, “Comparing properties of substrate-constrained and freestanding epitaxial Ni–Mn–Ga films,” Acta Mater. 58, 3415 (2010).
38.P. Ranzieri, M. Campanini, S. Fabbrici, L. Nasi, F. Casoli, R. Cabassi, E. Buffagni, V. Grillo, C. Magen, F. Celegato, G. Barrera, P. Tiberto, and F. Albertini, “Achieving giant magnetically induced reorientation of martensitic variants in magnetic shape-memory Ni-Mn-Ga films by microstructure engineering,” Adv. Mater. 27, 47604766 (2015).
39.B. Yang, Z. B. Li, Y. D. Zhang, G. W. Qin, C. Esling, O. Perroud, X. Zhao, and L. Zuo, “Microstructural features and orientation correlations of non-modulated martensite in Ni-Mn-Ga epitaxial thin films,” Acta Mater. 61, 68096820 (2013).
40.A. C. Fischer-Cripps, Nanoindentation (Springer, 2002).
41.A. M. Jakob, M. Müller, B. Rauschenbach, and S. G. Mayr, “Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys,” New J. Phys. 14, 033029 (2012).
42.D. Tabor, “The physical meaning of indentation and scratch hardness,” Br. J. Appl. Phys. 7, 159166 (1956).
43.See supplementary material at for an animation of the entire transformation.[Supplementary Material]
44.A. G. Khachaturyan, Theory of Structural Transformation in Solids (John Wiley & Sons, Inc., New York, 1983).
45.H. E. Karaca, I. Karaman, B. Basaran, D. C. Lagoudas, Y. I. Chumlyakov, and H. J. Maier, Acta Mater. 55, 4253 (2007).
46.P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, and G. K. Binnig, “The ‘millipede’ - nanotechnology entering data storage,” IEEE Trans. Nanotechnol. 1, 3955 (2002).

Data & Media loading...


Article metrics loading...



Magnetocaloric materials are promising as solid state refrigerants for more efficient and environmentally friendly cooling devices. The highest effects have been observed in materials that exhibit a first-order phase transition. These transformations proceed by nucleation and growth which lead to a hysteresis. Such irreversible processes are undesired since they heat up the material and reduce the efficiency of any cooling application. In this article, we demonstrate an approach to decrease the hysteresis by locally changing the nucleation barrier. We created artificial nucleation sites and analyzed the nucleation and growth processes in their proximity. We use Ni-Mn-Ga, a shape memoryalloy that exhibits a martensitic transformation.Epitaxialfilms serve as a model system, but their high surface-to-volume ratio also allows for a fast heat transfer which is beneficial for a magnetocaloric regenerator geometry. Nanoindentation is used to create a well-defined defect. We quantify the austenite phase fraction in its proximity as a function of temperature which allows us to determine the influence of the defect on the transformation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd