Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4948271
1.
1.S. Fähler, U. K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe, Adv. Eng. Mater. 14, 10 (2012).
http://dx.doi.org/10.1002/adem.201100178
2.
2.L. Mañosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 4925 (2013).
http://dx.doi.org/10.1039/c3ta01289a
3.
3.X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
http://dx.doi.org/10.1038/nmat3951
4.
4.I. Takeuchi and K. Sandeman, Phys. Today 68(12), 48 (2015).
http://dx.doi.org/10.1063/PT.3.3022
5.
5.X. Moya, E. Defay, V. Heine, and N. D. Mathur, Nat. Phys. 11, 204 (2015).
http://dx.doi.org/10.1038/nphys3271
6.
6.J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett. 101, 073904 (2012).
http://dx.doi.org/10.1063/1.4746257
7.
7.W. Goetzler, R. Zogg, J. Young, and C. Johnson, Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies (Navigant Consulting, Inc., U.S. Department of Energy, Burlington, MA, 2014).
8.
8.L. Mañosa, A. Planes, E. Vives, E. Bonnot, and R. Romero, Funct. Mater. Lett. 2, 73 (2009).
http://dx.doi.org/10.1142/S1793604709000594
9.
9.J. Otubo, O. D. Rigo, A. A. Coelho, C. M. Neto, and P. R. Mei, Mater. Sci. Eng. 481-482, 639 (2008).
http://dx.doi.org/10.1016/j.msea.2007.02.137
10.
10.J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, Acta Mater. 90, 213 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.02.029
11.
11.E. A. Pieczyska, H. Tobushi, and K. Kulasinski, Smart Mater. Struct. 22, 035007 (2013).
http://dx.doi.org/10.1088/0964-1726/22/3/035007
12.
12.S. Qian, J. Ling, J. Muehlbauer, Y. Hwang, and R. Radermacher, Int. J. Refrig. 55, 102 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.03.023
13.
13.S. Qian, J. Ling, Y. Hwang, R. Radermacher, and I. Takeuchi, Int. J. Refrig. 56, 65 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.04.001
14.
14.S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang, R. Radermacher, and I. Takeuchi, Int. J. Refrig. 57, 62 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.04.012
15.
15.J. Tušek, K. Engelbrecht, R. Millán-Solsona, L. Manñosa, E. Vives, L. P. Mikkelsen, and N. Pryds, Adv. Energy Mater. 5, 1500361 (2015).
http://dx.doi.org/10.1002/aenm.201500361
16.
16.M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, A. Schütze, G. Eggeler, and S. Seelecke, Shape Mem. Superelasticity 1, 132 (2015).
http://dx.doi.org/10.1007/s40830-015-0021-4
17.
17.S. Qian, Y. Wu, J. Ling, J. Muehlbauer, Y. Hwang, I. Takeuchi, and R. Radermacher, “Design, development and testing of a compressive thermoelastic cooling prototype,” in 24th International Congress of Refrigeration (ICR2015), Yokohama, Japan (submitted).
18.
18.M. Schmidt, A. Schütze, and S. Seelecke, Int. J. Refrig. 54, 88 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.03.001
19.
19.A. Majumdar, Nat. Nanotechnol. 4, 214 (2009).
http://dx.doi.org/10.1038/nnano.2009.65
20.
20.J. P. Carmo, M. F. Silva, J. F. Ribeiro, R. F. Wolffenbuttel, P. Alpuim, J. G. Rocha, L. M. Goncalves, and J. H. Correira, Microsyst. Technol. 17, 1283 (2011).
http://dx.doi.org/10.1007/s00542-011-1314-y
21.
21.H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, and M. Kohl, Acta Mater. 81, 9 (2014).
http://dx.doi.org/10.1016/j.actamat.2014.08.006
22.
22.C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, and M. Wuttig, Science 348, 1004 (2015).
http://dx.doi.org/10.1126/science.1261164
23.
23.H. Ossmer, S. Miyazaki, and M. Kohl, in Proceedings of the Transducers 2015, Anchorage, USA (IEEE, 2015), p. 726.
24.
24.R. Lima de Miranda, C. Zamponi, and E. Quandt, Adv. Eng. Mater. 15, 66 (2013).
http://dx.doi.org/10.1002/adem.201200197
25.
25.H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, and M. Kohl, Shape Mem. Superelasticity 1, 142 (2015).
http://dx.doi.org/10.1007/s40830-015-0014-3
26.
26.C. Bechtold, C. Chluba, R. Lima de Miranda, and E. Quandt, Appl. Phys. Lett. 101, 091903 (2012).
http://dx.doi.org/10.1063/1.4748307
27.
27.F. Xiao, T. Fukuda, and T. Kakeshita, Appl. Phys. Lett. 102, 161914 (2013).
http://dx.doi.org/10.1063/1.4803168
28.
28.W. Sun, J. Liu, B. Lu, Y. Li, and A. Yan, Scr. Mater. 114, 1 (2016).
http://dx.doi.org/10.1016/j.scriptamat.2015.11.021
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4948271
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4948271
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4948271
2016-04-28
2016-12-04

Abstract

The global trend of miniaturization and concomitant increase of functionality in microelectronics, microoptics, and various other fields in microtechnology leads to an emerging demand for temperature control at small scales. In this realm, elastocaloric cooling is an interesting alternative to thermoelectrics due to the large latent heat and good down-scaling behavior. Here, we investigate the elastocaloric effect due to a stress-induced phase transformation in binary TiNi and quaternary TiNiCuCo films of 20 m thickness produced by DC magnetron sputtering. The mesoscale mechanical and thermal performance, as well as the fatigue behavior are studied by uniaxial tensile tests combined with infrared thermography and digital image correlation measurements. Binary films exhibit strong features of fatigue, involving a transition from Lüders-like to homogeneous transformation behavior within three superelastic cycles. Quaternary films, in contrast, show stable Lüders-like transformation without any signs of degradation. The elastocaloric temperature change under adiabatic conditions is −15 K and −12 K for TiNi and TiNiCuCo films, respectively. First-of-its-kind heat pump demonstrators are developed that make use of out-of-plane deflection of film bridges. Owing to their large surface-to-volume ratio, the demonstrators reveal rapid heat transfer. The TiNiCuCo-based devices, for instance, generate a temperature difference of 3.5 K within 13 s. The coefficients of performance of the demonstrators are about 3.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4948271.html;jsessionid=N9tMv-8ll-s-h2rizGLj9a1j.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4948271&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4948271&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4948271'
Top,Right1,Right2,Right3,