Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.S. Fähler, U. K. Rößler, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe, Adv. Eng. Mater. 14, 10 (2012).
2.L. Mañosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 4925 (2013).
3.X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
4.I. Takeuchi and K. Sandeman, Phys. Today 68(12), 48 (2015).
5.X. Moya, E. Defay, V. Heine, and N. D. Mathur, Nat. Phys. 11, 204 (2015).
6.J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett. 101, 073904 (2012).
7.W. Goetzler, R. Zogg, J. Young, and C. Johnson, Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies (Navigant Consulting, Inc., U.S. Department of Energy, Burlington, MA, 2014).
8.L. Mañosa, A. Planes, E. Vives, E. Bonnot, and R. Romero, Funct. Mater. Lett. 2, 73 (2009).
9.J. Otubo, O. D. Rigo, A. A. Coelho, C. M. Neto, and P. R. Mei, Mater. Sci. Eng. 481-482, 639 (2008).
10.J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, Acta Mater. 90, 213 (2015).
11.E. A. Pieczyska, H. Tobushi, and K. Kulasinski, Smart Mater. Struct. 22, 035007 (2013).
12.S. Qian, J. Ling, J. Muehlbauer, Y. Hwang, and R. Radermacher, Int. J. Refrig. 55, 102 (2015).
13.S. Qian, J. Ling, Y. Hwang, R. Radermacher, and I. Takeuchi, Int. J. Refrig. 56, 65 (2015).
14.S. Qian, A. Alabdulkarem, J. Ling, J. Muehlbauer, Y. Hwang, R. Radermacher, and I. Takeuchi, Int. J. Refrig. 57, 62 (2015).
15.J. Tušek, K. Engelbrecht, R. Millán-Solsona, L. Manñosa, E. Vives, L. P. Mikkelsen, and N. Pryds, Adv. Energy Mater. 5, 1500361 (2015).
16.M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, A. Schütze, G. Eggeler, and S. Seelecke, Shape Mem. Superelasticity 1, 132 (2015).
17.S. Qian, Y. Wu, J. Ling, J. Muehlbauer, Y. Hwang, I. Takeuchi, and R. Radermacher, “Design, development and testing of a compressive thermoelastic cooling prototype,” in 24th International Congress of Refrigeration (ICR2015), Yokohama, Japan (submitted).
18.M. Schmidt, A. Schütze, and S. Seelecke, Int. J. Refrig. 54, 88 (2015).
19.A. Majumdar, Nat. Nanotechnol. 4, 214 (2009).
20.J. P. Carmo, M. F. Silva, J. F. Ribeiro, R. F. Wolffenbuttel, P. Alpuim, J. G. Rocha, L. M. Goncalves, and J. H. Correira, Microsyst. Technol. 17, 1283 (2011).
21.H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, and M. Kohl, Acta Mater. 81, 9 (2014).
22.C. Chluba, W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, and M. Wuttig, Science 348, 1004 (2015).
23.H. Ossmer, S. Miyazaki, and M. Kohl, in Proceedings of the Transducers 2015, Anchorage, USA (IEEE, 2015), p. 726.
24.R. Lima de Miranda, C. Zamponi, and E. Quandt, Adv. Eng. Mater. 15, 66 (2013).
25.H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, and M. Kohl, Shape Mem. Superelasticity 1, 142 (2015).
26.C. Bechtold, C. Chluba, R. Lima de Miranda, and E. Quandt, Appl. Phys. Lett. 101, 091903 (2012).
27.F. Xiao, T. Fukuda, and T. Kakeshita, Appl. Phys. Lett. 102, 161914 (2013).
28.W. Sun, J. Liu, B. Lu, Y. Li, and A. Yan, Scr. Mater. 114, 1 (2016).

Data & Media loading...


Article metrics loading...



The global trend of miniaturization and concomitant increase of functionality in microelectronics, microoptics, and various other fields in microtechnology leads to an emerging demand for temperature control at small scales. In this realm, elastocaloric cooling is an interesting alternative to thermoelectrics due to the large latent heat and good down-scaling behavior. Here, we investigate the elastocaloric effect due to a stress-induced phase transformation in binary TiNi and quaternary TiNiCuCo films of 20 m thickness produced by DC magnetron sputtering. The mesoscale mechanical and thermal performance, as well as the fatigue behavior are studied by uniaxial tensile tests combined with infrared thermography and digital image correlation measurements. Binary films exhibit strong features of fatigue, involving a transition from Lüders-like to homogeneous transformation behavior within three superelastic cycles. Quaternary films, in contrast, show stable Lüders-like transformation without any signs of degradation. The elastocaloric temperature change under adiabatic conditions is −15 K and −12 K for TiNi and TiNiCuCo films, respectively. First-of-its-kind heat pump demonstrators are developed that make use of out-of-plane deflection of film bridges. Owing to their large surface-to-volume ratio, the demonstrators reveal rapid heat transfer. The TiNiCuCo-based devices, for instance, generate a temperature difference of 3.5 K within 13 s. The coefficients of performance of the demonstrators are about 3.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd