Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4950788
1.
S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 5, 067153 (2015).
http://dx.doi.org/10.1063/1.4922871
2.
X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
http://dx.doi.org/10.1038/nmat3951
3.
S. Pamir Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang, and R. W. Whatmore, MRS Bull. 39, 1099 (2014).
http://dx.doi.org/10.1557/mrs.2014.256
4.
Electrocaloric Materials: New Generation of Coolers, edited by T. Correia and Q. Zhang (Springer-Verlag, Berlin, 2014).
5.
M. Valant, Prog. Mater. Sci. 57, 980 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2012.02.001
6.
J. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100341
7.
S. G. Lu and Q. M. Zhang, Adv. Mater. 21, 1983 (2009).
http://dx.doi.org/10.1002/adma.200802902
8.
P. Kobeko and I. Kurchatov, Z. Phys. 66, 192 (1930).
http://dx.doi.org/10.1007/BF01392900
9.
S. Kar-Narayan and N. D. Mathur, Ferroelectrics 433, 107 (2012).
http://dx.doi.org/10.1080/00150193.2012.678147
10.
S. Kar-Narayan and N. D. Mathur, Appl. Phys. Lett. 95, 242903 (2009).
http://dx.doi.org/10.1063/1.3275013
11.
Y. Jia and Y. S. Ju, Appl. Phys. Lett. 100, 242901 (2012).
http://dx.doi.org/10.1063/1.4729038
12.
H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S. C. Yao, and Q. M. Zhang, Appl. Phys. Lett. 102, 122904 (2013).
http://dx.doi.org/10.1063/1.4799283
13.
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
http://dx.doi.org/10.1126/science.1123811
14.
B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
http://dx.doi.org/10.1126/science.1159655
15.
M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
16.
R. Pirc, Z. Kutnjak, R. Blinc, and Q. M. Zhang, J. Appl. Phys. 98, 021909 (2011).
http://dx.doi.org/10.1063/1.3543628
17.
L. Shebanov and K. Borman, Ferroelectrics 127, 143 (1992).
http://dx.doi.org/10.1080/00150199208223361
18.
A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, Appl. Phys. Lett. 89, 242912 (2006).
http://dx.doi.org/10.1063/1.2405889
19.
J. Hagberg, A. Uusimäki, and H. Jantunen, Appl. Phys. Lett. 92, 132909 (2008).
http://dx.doi.org/10.1063/1.2905296
20.
T. M. Correia, J. S. Young, R. W. Whatmore, J. F. Scott, N. D. Mathur, and Q. Zhang, Appl. Phys. Lett. 95, 182904 (2009).
http://dx.doi.org/10.1063/1.3257695
21.
S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, R. Pirc, M. Lin, X. Li, and L. Gorny, Appl. Phys. Lett. 97, 202901 (2010).
http://dx.doi.org/10.1063/1.3514255
22.
M. Valant, L. J. Dunne, A.-K. Axelsson, N. McN. Alford, G. Manos, J. Peräntie, J. Hagberg, H. Jantunen, and A. Dabkowski, Phys. Rev. B 81, 214110 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.214110
23.
L. J. Dunne, M. Valant, A. K. Axelsson, G. Manos, and N. McN. Alford, J. Phys. D: Appl. Phys. 44, 375404 (2011).
http://dx.doi.org/10.1088/0022-3727/44/37/375404
24.
B. Rožič, B. Malič, H. Uršič, J. Holc, M. Kosec, and Z. Kutnjak, Ferroelectrics 421, 103 (2011).
http://dx.doi.org/10.1080/00150193.2011.594742
25.
R. Pirc, Z. Kutnjak, R. Blinc, and Q. M. Zhang, J. Appl. Phys. 110, 074113 (2011).
http://dx.doi.org/10.1063/1.3650906
26.
F. Le Goupil, A. Berenov, A. K. Axelsson, M. Valant, and N. McN. Alford, J. Appl. Phys. 111, 124109 (2012).
http://dx.doi.org/10.1063/1.4730338
27.
J. Peräntie, H. N. Tailor, J. Hagberg, H. Jantunen, and Z.-G. Ye, J. Appl. Phys. 114, 174105 (2013).
http://dx.doi.org/10.1063/1.4829012
28.
F. Le Goupil, A.-K. Axelsson, L. J. Dunne, M. Valant, G. Manos, T. Lukasiewicz, J. Dec, A. Berenov, and N. McN. Alford, Adv. Energy Mater. 4, 1301688 (2014).
http://dx.doi.org/10.1002/aenm.201301688
29.
G. G. Guzmán-Verri, P. B. Littlewood, and C. M. Varma, Phys. Rev. B 88, 134106 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.134106
30.
G. G. Guzmán-Verri and C. M. Varma, Phys. Rev. B 91, 144105 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.144105
31.
See supplementary material at http://dx.doi.org/10.1063/1.4950788 for model Hamiltonian, its approximate solution, and the calculation of the ECE from Landau theory for BTO.[Supplementary Material]
32.
B. A. Strukov, Sov. Phys.-Crystallogr. 11, 757 (1967).
33.
B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998).
34.
V. Franco and E. Conde, Int. J. Refrig. 33, 465 (2010).
http://dx.doi.org/10.1016/j.ijrefrig.2009.12.019
35.
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology–Ferroelectrics and Related Substances, edited by K.-H. Hellwege and A. M. Hellwege (Springer-Verlag, Berlin, 1981), Vol. 16.
36.
R. Mackeviciute, M. Ivanov, J. Banys, N. Novak, Z. Kutnjak, M. Wenka, and J. F. Scott, J. Phys.: Condens. Matter 25, 212201 (2013).
http://dx.doi.org/10.1088/0953-8984/25/21/212201
37.
S. E. Rowley, M. Hadjimichael, M. N. Ali, Y. C. Durmaz, J. C. Lashley, R. J. Cava, and J. F. Scott, J. Phys.: Condens. Matter 27, 395901 (2015).
http://dx.doi.org/10.1088/0953-8984/27/39/395901
38.
L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
http://dx.doi.org/10.1021/ja01299a050
39.
W. Cochran, Phys. Rev. Lett. 3, 412 (1959);
http://dx.doi.org/10.1103/PhysRevLett.3.412
P. W. Anderson, in Fizika Dielectrikov, edited by G. I. Skanavi (Akad. Nauk SSSR Fizicheskii Inst., im P. N. Levedeva, Moscow, 1960).
40.
Z. Kutnjak, R. Blinc, and Y. Ishibashi, Phys. Rev. B 76, 104102 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.104102
41.
Y. P. Shi and A. K. Soh, Act. Mater. 59, 5574 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.05.030
42.
N. Novak, Z. Kutnjak, and R. Pirc, EPL 103, 47001 (2013).
http://dx.doi.org/10.1209/0295-5075/103/47001
43.
E. Defay, S. Crossley, S. Kar-Narayan, X. Moya, and N. D. Mathur, Adv. Mater. 25, 3337 (2013).
http://dx.doi.org/10.1002/adma.201300606
44.
X. Moya, E. Defay, V. Heine, and N. D. Mathur, Nat. Phys. 11, 202 (2015).
http://dx.doi.org/10.1038/nphys3271
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4950788
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4950788
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4950788
2016-05-19
2016-12-09

Abstract

Ferroelectrics are attractive candidate materials for environmentally friendly solid state refrigeration free of greenhouse gases. Their thermal response upon variations of external electric fields is largest in the vicinity of their phase transitions, which may occur near room temperature. The magnitude of the effect, however, is too small for useful cooling applications even when they are driven close to dielectric breakdown. Insight from microscopic theory is therefore needed to characterize materials and provide guiding principles to search for new ones with enhanced electrocaloric performance. Here, we derive from well-known microscopic models of ferroelectricity meaningful figures of merit for a wide class of ferroelectric materials. Such figures of merit provide insight into the relation between the strength of the effect and the characteristic interactions of ferroelectrics such as dipolar forces. We find that the long range nature of these interactions results in a small effect. A strategy is proposed to make it larger by shortening the correlation lengths of fluctuations of polarization. In addition, we bring into question other widely used but empirical figures of merit and facilitate understanding of the recently observed secondary broad peak in the electrocalorics of relaxor ferroelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4950788.html;jsessionid=4tBjT1V7SWIXWO7d8RPAK-jS.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4950788&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4950788&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4950788'
Top,Right1,Right2,Right3,