Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4950796
1.
E. T. Jaynes, Ferroelectricity (Princeton University Press, 1953).
2.
W. Heywang and H. Thomann, Annu. Rev. Mater. Sci. 14, 27 (1984).
http://dx.doi.org/10.1146/annurev.ms.14.080184.000331
3.
H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys., Part 1 42, 1 (2003).
http://dx.doi.org/10.1143/JJAP.42.1
4.
J. F. Scott, A. Paz, and A. Carlos, Science 246, 1400 (1989).
http://dx.doi.org/10.1126/science.246.4936.1400
5.
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
http://dx.doi.org/10.1126/science.1123811
6.
B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
http://dx.doi.org/10.1126/science.1159655
7.
X. S. Qian, H. J. Ye, Y. T. Zhang, H. Gu, X. Li, C. A. Randall, and Q. M. Zhang, Adv. Funct. Mater. 24, 1300 (2014).
http://dx.doi.org/10.1002/adfm.201302386
8.
B. Peng, H. Fan, and Q. Zhang, Adv. Funct. Mater. 23, 2987 (2013).
http://dx.doi.org/10.1002/adfm.201202525
9.
S. Kar-Narayan and N. D. Mathur, Appl. Phys. Lett. 95, 242903 (2009).
http://dx.doi.org/10.1063/1.3275013
10.
R. I. Epstein and K. J. Malloy, J. Appl. Phys. 106, 064509 (2009).
http://dx.doi.org/10.1063/1.3190559
11.
Y. Bai, G.-P. Zheng, K. Ding, L. Qiao, S.-Q. Shi, and D. Guo, J. Appl. Phys. 110, 094103 (2011).
http://dx.doi.org/10.1063/1.3658251
12.
D. Guo, J. Gao, Y.-J. Yu, S. Santhanam, A. Slippey, G. K. Fedder, A. J. H. McGaughey, and S.-C. Yao, Int. J. Heat Mass Transfer 72, 559 (2014).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.01.043
13.
X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
http://dx.doi.org/10.1038/nmat3951
14.
S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 5, 067153 (2015).
http://dx.doi.org/10.1063/1.4922871
15.
S. Crossley, T. Usui, B. Nair, S. Kar-Narayan, X. Moya, S. Hirose, A. Ando, and N. D. Mathur, Appl. Phys. Lett. 108, 032902 (2016).
http://dx.doi.org/10.1063/1.4938758
16.
T. Usui, S. Hirose, S. Crossley, B. Nair, X. Moya, and N. D. Mathur, “Electrocaloric effects in multilayer capacitors of 0.9Pb(Mg1/2Nb2/3)O3 − 0.1PbTiO3” (unpublished).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4950796 for details of sample fabrication measurement methods, and electrocaloric data for a plate ceramic of thickness 300μm.[Supplementary Material]
18.
J. Peräntie, H. N. Tailor, J. Hagberg, H. Jantunen, and Z.-G. Ye, J. Appl. Phys. 114, 174105 (2013).
http://dx.doi.org/10.1063/1.4829012
19.
J. Hagberg, A. Uusimäki, and H. Jantunen, Appl. Phys. Lett. 92, 132909 (2008).
http://dx.doi.org/10.1063/1.2905296
20.
M. Vrabelj, H. Uršič, Z. Kutnjak, B. Rožič, S. Drnovšek, A. Benčan, V. Bobnar, L. Fulanović, and B. Malič, J. Eur. Ceram. Soc. 36, 75 (2016).
http://dx.doi.org/10.1016/j.jeurceramsoc.2015.09.031
21.
R. Waser, T. Baiatu, and K.-H. Hardtl, J. Am. Ceram. Soc. 73, 1645 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb09809.x
22.
R. Waser, T. Baiatu, and K.-H. Hardtl, J. Am. Ceram. Soc. 73, 1654 (1990).
http://dx.doi.org/10.1111/j.1151-2916.1990.tb09810.x
23.
S. R. Winzer, N. Shankar, and A. P. Ritter, J. Am. Ceram. Soc. 72, 2246 (1989).
http://dx.doi.org/10.1111/j.1151-2916.1989.tb06069.x
24.
J. Glaum and M. Hoffman, J. Am. Ceram. Soc. 97, 665 (2014).
http://dx.doi.org/10.1111/jace.12811
25.
P. Pertsch, S. Richter, D. Kopsch, N. Kramer, J. Pogodzik, and E. Henning, in Actuator 2006 Conference Proceedings (HVG Hanseatische Veranstaltungs-GmbH, 2006), pp. 1416.
26.
S. Crossley, J. R. McGinnigle, S. Kar-Narayan, and N. D. Mathur, Appl. Phys. Lett. 104, 082909 (2014).
http://dx.doi.org/10.1063/1.4866256
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4950796
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4950796
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4950796
2016-05-18
2016-09-26

Abstract

A multilayer capacitor comprising 19 layers of 38 m-thick 0.9Pb(MgNb)O–0.1PbTiO has elsewhere been shown to display electrocaloric temperature changes of 2.2 K due to field changes of 24 V m−1, near ∼100 °C. Here we demonstrate temperature changes of 1.2 K in an equivalent device with 2.6 times the thermal mass, i.e., 49 layers that could tolerate 10.3 V m−1. Breakdown was compromised by the increased number of layers, and occurred at 10.5 V m−1 near the edge of a near-surface inner electrode. Further optimization is required to improve the breakdown strength of large electrocaloric multilayer capacitors for cooling applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4950796.html;jsessionid=HdlUlFCfJ2MXuZqv-2RT1w8R.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4950796&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4950796&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4950796'
Top,Right1,Right2,Right3,