Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4953433
1.
S. Fähler, U. K. Rößler et al., “Caloric effects in ferroic materials: New concepts for cooling,” Adv. Eng. Mater. 14(1–2), 1019 (2012).
http://dx.doi.org/10.1002/adem.201100178
2.
X. Moya, S. Kar-Narayan, and N. D. Mathur, “Caloric materials near ferroic phase transitions,” Nat. Mater. 13(5), 439450 (2014).
http://dx.doi.org/10.1038/nmat3951
3.
L. Manosa, A. Planes, and M. Acet, “Advanced materials for solid-state refrigeration,” J. Mater. Chem. A 1(16), 49254936 (2013).
http://dx.doi.org/10.1039/c3ta01289a
4.
V. K. Pecharsky and K. A. Gschneidner, Jr., “Giant magnetocaloric effect in Gd5(Si2Ge2),” Phys. Rev. Lett. 78(23), 44944497 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
5.
B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, “A review of magnetic refrigerator and heat pump prototypes built before the year 2010,” Int. J. Refrig. 33(6), 10291060 (2010).
http://dx.doi.org/10.1016/j.ijrefrig.2010.04.002
6.
A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ozbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer, 2014), https://books.google.com/books?id=1KivBQAAQBAJ&pgis=1.
7.
Y. Jia and Y. Sungtaek Ju, “A solid-state refrigerator based on the electrocaloric effect,” Appl. Phys. Lett. 100(24), 242901 (2012).
http://dx.doi.org/10.1063/1.4729038
8.
R. Chukka, S. Vandrangi, S. Shannigrahi, and L. Chen, “An electrocaloric device demonstrator for solid-state cooling,” EPL 103(4), 47011 (2013).
http://dx.doi.org/10.1209/0295–5075/103/4701110.1209/0295-5075/103/47011
9.
U. Plaznik, A. Kitanovski et al., “Bulk relaxor ferroelectric ceramics as a working body for an electrocaloric cooling device,” Appl. Phys. Lett. 106(4), 043903 (2015).
http://dx.doi.org/10.1063/1.4907258
10.
M. Schmidt, A. Schütze, and S. Seelecke, “Experimental investigation on the efficiency of a control dependent NiTi-based cooling process,” in Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bioinspired Smart Materials and Systems; Energy Harvesting (ASME Proceedings, 2014) Vol. 2, p. V002T04A013.
http://dx.doi.org/10.1115/SMASIS2014-7561
11.
M. Schmidt, A. Schütze, and S. Seelecke, “Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes,” Int. J. Refrig. 54, 8897 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.03.001
12.
S. Qian, Y. Geng et al., “A review of elastocaloric cooling: Materials, cycles and system integrations,” Int. J. Refrig. 64, 116 (2016).
http://dx.doi.org/10.1016/j.ijrefrig.2015.12.001
13.
J. Quarini and A. Prince, “Solid state refrigeration: Cooling and refrigeration using crystalline phase changes in metal alloys,” Proc. Inst. Mech. Eng., Part C 218(10), 11751179 (2004).
http://dx.doi.org/10.1243/0954406042369062
14.
B.-C. Chang, J. A. Shaw, and M. A. Iadicola, “Thermodynamics of shape memory alloy wire: Modeling, experiments, and application,” Continuum Mech. Thermodyn. 18(1–2), 83118 (2006).
http://dx.doi.org/10.1007/s00161-006-0022-9
15.
L. G. Machado and M. A. Savi, “Medical applications of shape memory alloys,” Braz. J. Med. Biol. Res. 36(6), 683691 (2003).
http://dx.doi.org/10.1590/S0100-879X2003000600001
16.
N. Morgan, “Medical shape memory alloy applications—The market and its products,” Mater. Sci. Eng. A 378(1–2), 1623 (2004).
http://dx.doi.org/10.1016/j.msea.2003.10.326
17.
C. Bechtold, C. Chluba, R. Lima de Miranda, and E. Quandt, “High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films,” Appl. Phys. Lett. 101(9), 091903 (2012).
http://dx.doi.org/10.1063/1.4748307
18.
J. Frenzel, A. Wieczorek, I. Opahle, B. Maaß, R. Drautz, and G. Eggeler, “On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys,” Acta Mater. 90, 213231 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.02.029
19.
C. Chluba, W. Ge et al., “Shape memory alloys. Ultralow-fatigue shape memory alloy films,” Science 348(6238), 10041007 (2015).
http://dx.doi.org/10.1126/science.1261164
20.
H. Ossmer, C. Chluba, M. Gueltig, E. Quandt, and M. Kohl, “Local evolution of the elastocaloric effect in TiNi-based films,” Shape Mem. Superelasticity 1, 142152 (2015).
http://dx.doi.org/10.1007/s40830-015-0014-3
21.
S. Jaeger, B. Maaß et al., “On the widths of the hysteresis of mechanically and thermally induced martensitic transformations in Ni-Ti based shape memory alloys,” Int. J. Mater. Res. 106(10), 10291039 (2015).
http://dx.doi.org/10.3139/146.111284
22.
M. Schmidt, A. Schütze, and S. Seelecke, “Cooling efficiencies of a NiTi-based cooling process,” in ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Development and Characterization of Multifunctional Materials; Modeling, Simulation and Control of Adaptive Systems; Integrated System Design and Implementation (ASME Proceedings, 2013), Vol. 1, p. V001T04A014.
http://dx.doi.org/10.1115/SMASIS2013-3249
23.
M. Schmidt, A. Schütze, and S. Seelecke, “The potential of NiTi-based solid state cooling processes,” Deutscher Kälte- und Klimatechnischer Verein, Annual Meeting Vol. 2, pp. 201207, 2013, http://www.proceedings.com/21513.html.
24.
J. Tušek, K. Engelbrecht et al., “The elastocaloric effect: A way to cool efficiently,” Adv. Energy Mater. 5(13), 1500361 (2015).
http://dx.doi.org/10.1002/aenm.201500361
25.
S. Qian, J. Ling, Y. Hwang, R. Radermacher, and I. Takeuchi, “Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems,” Int. J. Refrig. 56, 6580 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.04.001
26.
H. Ossmer, S. Miyazaki, and M. Kohl, “Elastocaloric heat pumping using a shape memory alloy foil device,” in 2015 Transducers–2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, 2015), pp. 726729.
http://dx.doi.org/10.1109/TRANSDUCERS.2015.7181026
27.
M. Schmidt, A. Schütze, and S. Seelecke, “Wissenschaftliche testplattform zur optimierung formgedächtnisbasierter elastokalorischer kühlprozesse,” in XXIX Messtechnisches Symposium Arbeitskreis der Hochschullehrer für Messtechnik (De Gruyter, 2015), pp. 5966.
http://dx.doi.org/10.1515/9783110408539-008
28.
M. Schmidt, A. Schütze, and S. Seelecke, “Experimental investigation of elastocaloric cooling processes,” Tech. Mess. 83(4), 208218 (2016).
http://dx.doi.org/10.1515/teme-2015-0110
29.
U. Plaznik, J. Tušek, A. Kitanovski, and A. Poredoš, “Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator,” Appl. Therm. Eng. 59(1–2), 5259 (2013).
http://dx.doi.org/10.1016/j.applthermaleng.2013.05.019
30.
M. Schmidt, J. Ullrich et al., “Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training,” Shape Mem. Superelasticity 1, 132141 (2015).
http://dx.doi.org/10.1007/s40830-015-0021-4
31.
J. Shaw and S. Kyriakides, “Thermomechanical aspects of NiTi,” J. Mech. Phys. Solids 43(8), 12431281 (1995).
http://dx.doi.org/10.1016/0022-5096(95)00024-D
32.
S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, and Y. Liu, “Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires,” Mater. Sci. Eng. A 273-275, 658663 (1999).
http://dx.doi.org/10.1016/S0921-5093(99)00344-5
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4953433
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4953433
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4953433
2016-06-08
2016-09-29

Abstract

This paper discusses the influence of material strain and strain rate on efficiency and temperature span of elastocaloric cooling processes. The elastocaloric material, a newly developed quaternary Ni-Ti-Cu-V alloy, is characterized at different maximum strains and strain rates. The experiments are performed with a specially designed test setup, which enables the measurement of mechanical and thermal process parameters. The material efficiency is compared to the efficiency of the Carnot process at equivalent thermal operation conditions. This method allows for a direct comparison of the investigated material with other caloric materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4953433.html;jsessionid=BRHcZHc4mYyTMaCEzUj1Fra9.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4953433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4953433&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4953433'
Top,Right1,Right2,Right3,