Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4953434
1.
J. A. Barclay and W. A. Steyert, “Active magnetic regenerator,” U.S. patent 4,332,135 (27 January 1981).
2.
V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78, 4494 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
3.
O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).
http://dx.doi.org/10.1038/415150a
4.
A. Fujita, K. Fukamichi, H. Mitamura, and T. Goto, Phys. Rev. B 65, 014410 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.014410
5.
T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).
http://dx.doi.org/10.1038/nmat1395
6.
L. Manosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 4925 (2013).
http://dx.doi.org/10.1039/c3ta01289a
7.
S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 5, 067153 (2015).
http://dx.doi.org/10.1063/1.4922871
8.
A. Kitanovski, U. Plaznik, U. Tomc, and A. Poredoš, Int. J. Refrig. 57, 288 (2015).
http://dx.doi.org/10.1016/j.ijrefrig.2015.06.008
9.
D. Matunami and A. Fujita, Appl. Phys. Lett. 106, 042901 (2015).
http://dx.doi.org/10.1063/1.4906801
10.
A. Fujita, Y. Akamatsu, and K. Fukamichi, J. Appl. Phys. 85, 4756 (1999).
http://dx.doi.org/10.1063/1.370471
11.
A. Fujita and H. Yako, Scr. Mater. 67, 578 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.03.033
12.
M. E. Gruner, W. Keune, B. Roldan Cuenya, C. Weis, J. Landers, S. I. Makarov, D. Klar, M. Y. Hu, E. E. Alp, J. Zhao, M. Krautz, O. Gutfleisch, and H. Wende, Phys. Rev. Lett. 114, 184405 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.057202
13.
Z. Gercsi, N. Fuller, A. Fujita, and K. Sandeman, in Abstract of 13th MMM-Intermag Joint Conference, FP-01 (2015).
14.
A. Fujita, K. Fukamichi, M. Yamada, and T. Goto, Phys. Rev. B 73, 104420 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.104420
15.
A. Fujita and K. Takenaka, “Entropics: Science and engineering of caloric phenomena related to itinerant-electron magnetism and spin fluctuations,” J. Phys.: Conf. Ser. (to be published).
16.
T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism (Springer, Berlin, 1985).
17.
A. J. Pindor, J. Staunton, G. M. Stocks, and H. Winter, J. Phys. F: Met. Phys. 13, 979 (1993).
http://dx.doi.org/10.1088/0305-4608/13/5/012
18.
H. Akai and P. H. Dederichs, Phys. Rev. B 47, 8739 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.8739
19.
A. Fujita, D. Matsunami, and H. Yako, in Proceedings of 6th IIF-IIR International Conference on Magnetic Refrigeration, M5-1582 (2014).
20.
T. T. M. Palstra, J. A. Mydosh, G. J. Nieuwenhuys, A. M. van der Kraan, and K. H. J. Buschow, J. Magn. Magn. Mater. 36, 290 (1983).
http://dx.doi.org/10.1016/0304-8853(83)90128-2
21.
F. X. Hu, J. Gao, X. L. Qian, Y. X. Li, J. Du, J. R. Sun, and B. G. Shen, IEEE Trans. Magn. 40, 2754 (2004).
http://dx.doi.org/10.1109/TMAG.2004.832500
22.
H. Wada, D. Kawasaki, and Y. Maekawa, IEEE Trans. Magn. 50, 2501806 (2014).
http://dx.doi.org/10.1109/TMAG.2014.2303818
23.
M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).
http://dx.doi.org/10.1103/PhysRevLett.20.665
24.
C. Pfleiderer, D. Reznik, L. Pintschovius, H.v. Löhneysen, M. Garst, and A. Rosch, Nature 427, 227 (2004).
http://dx.doi.org/10.1038/nature02232
25.
J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
http://dx.doi.org/10.1143/PTP.32.37
26.
A. Fujita, S. Fujieda, and K. Fukamichi, IEEE Trans. Magn. 45, 2620 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2018921
27.
A. Barcza, M. Katter, V. Zellmann, S. Russek, S. Jacobs, and C. Zimm, IEEE Trans. Magn. 47, 3391 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2147774
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4953434
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4953434
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4953434
2016-06-08
2016-09-30

Abstract

The paramagnetic fluctuations are investigated in La(FeSi). The disordered local moment (DLM) is represented by the first principle calculations. With a reduction of the volume, the DLM amplitude decreases gradually. In the temperature dependence of electrical resistivity under hydrostatic pressure, an upturn in the variation of in the paramagnetic state was observed with decreasing temperature, which is originated from the Curie-Weiss-type DLM fluctuations. In the vicinity of the critical pressure for disappearance of the DLM, the variation of as a function of log() was observed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4953434.html;jsessionid=iygMPNKpmv0Kfpn5C5pTxxbX.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4953434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4953434&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4953434'
Top,Right1,Right2,Right3,