Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007);
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
F. Bonaccorso, A. Lombardo, T. Hasan, Zh. Sun, L. Colombo, and A. C. Ferrari, Mater. Today 15, 564 (2012).
Y. Zheng, G. X. Ni, S. Bae, C. X. Cong, O. Kahya, C. T. Toh, H. R. Kim, D. Im, T. Yu, J. H. Ahn, B. H. Hong, and B. Ozyilmaz, Europhys. Lett. 93, 17002 (2011);
X. Hong, K. Zou, A. M. DaSilva, C. H. Ahn, and J. Zhu, Solid State Commun. 152, 1365 (2012).
D. F. Jin, A. Kumar, K. H. Fung, J. Xu, and N. X. Fang, Appl. Phys. Lett. 102, 201118 (2013).
J. Park, T. Back, W. C. Mitchel, S. S. Kim, S. Elhamri, J. Boeckl, S. B. Fairchild, R. Naik, and A. A. Voevodin, Sci. Rep. 5, 14374 (2015).
H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M. Chshiev, Phys. Rev. Lett. 110, 046603 (2013).
F. Li, T. Li, and X. Guo, ACS Appl. Mater. Interfaces 6, 1187 (2014);
M. Rocci, J. Tornos, A. Rivera-Calzada, Z. Sefrioui, M. Clement, E. Iborra, C. Leon, and J. Santamaria, Appl. Phys. Lett. 104, 102408 (2014).
A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
P. D. Eerkes, W. G. Van Der Wiel, and H. Hilgenkamp, Appl. Phys. Lett. 103, 201603 (2013).
A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
D. Stornaiuolo, C. Cantoni, G. M. De Luca, R. Di Capua, E. Di Gennaro, G. Ghiringhelli, B. Jouault, D. Marrè, D. Massarotti, F. M. Granozio, I. Pallecchi, C. Piamonteze, S. Rusponi, F. Tafuri, and M. Salluzzo, Nat. Mater. 15, 278 (2016).
M. B. Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010);
A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).
R. Arras, V. G. Ruiz, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 85, 125404 (2012);
E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, and M. Bibes, Nat. Commun. 5, 4291 (2014).
B. Förg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012);
M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, Adv. Funct. Mater. 23, 5240 (2013);
Y. J. Shi, S. Wang, Y. Zhou, H. F. Ding, and D. Wu, Appl. Phys. Lett. 102, 071605 (2013).
A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, A. C. Ferrari, L. N. Pfeiffer, K. W. West, M. Polini, and V. Pellegrini, Nat. Commun. 5, 5824 (2014).
M. Huang, G. Jnawali, J.-F. Hsu, S. Dhingra, H. Lee, S. Ryu, F. Bi, F. Ghahari, J. Ravichandran, L. Chen, P. Kim, C.-B. Eom, B. D’Urso, P. Irvin, and J. Levy, APL Mater. 3, 062502 (2015).
C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
C. Cantoni, J. Gazquez, F. M. Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, P. Perna, and D. Maccariello, Adv. Mater. 24, 3952 (2012);
C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. Maccariello, F. M. Granozio, and U. S. di Uccio, Appl. Phys. Lett. 97, 252105 (2010).
V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, 2D Mater. 2, 014006 (2015).
Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, ACS Nano 5, 9927 (2011);
L. Gao, W. Ren, H. Xu, L. Jin, Zh. Wang, T. Ma, L.-P. Ma, Zh. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat. Commun. 3, 699 (2012).
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006);
A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009);
P. W. Peacock and J. Robertson, J. Appl. Phys. 92, 4713 (2002).
G. Drera, G. Salvinelli, A. Brinkman, M. Huijben, G. Koster, H. Hilgenkamp, G. Rijnders, D. Visentin, and L. Sangaletti, Phys. Rev. B 87, 075435 (2013).
U. Treske, N. Heming, M. Knupfer, B. Büchner, E. di Gennaro, A. Khare, U. S. di Uccio, F. M. Granozio, S. Krause, and A. Koitzsch, Sci. Rep. 5, 14506 (2015).
W. J. Son, E. Cho, B. Lee, J. Lee, and S. Han, Phys. Rev. B 79, 245411 (2009);
Z. S. Popovic, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101, 256801 (2008).
J. R. Tolsma, A. Principi, R. Asgari, M. Polini, and A. H. MacDonald, Phys. Rev. B 93, 045120 (2016).
M. Salluzzo, J. Cezar, N. Brookes, V. Bisogni, G. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009);
C. Cancellieri, M. L. Reinle-Schmitt, M. Kobayashi, V. N. Strocov, P. R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, and V. Fiorentini, Phys. Rev. B 89, 121412 (2014).
See supplementary material at for a more detailed description of the capacitance-voltage measurements and the electrostatic and transport models of the system and complete description of the experimental and theoretical analysis of the electrostatic problem of the junction and the WKB-tunneling model of the graphene-oxide 2DES transport.[Supplementary Material]
G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang, and R. Ramesh, Nat. Phys. 7, 80 (2010).
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
S. K. Kim, S.-I. Kim, H. Lim, D. S. Jeong, B. Kwon, S.-H. Baek, and J.-S. Kim, Sci. Rep. 5, 8023 (2015).
C.-C. Tang, M.-Y. Li, L. J. Li, C. C. Chi, and J.-C. Chen, Appl. Phys. Lett. 101, 202104 (2012).
G. Jnawali, M. Huang, J.-F. Hsu, H. Lee, P. Irvin, C.-B. Eom, B. D’Urso, and J. Levy, e-print arXiv:1602.03128v1.

Data & Media loading...


Article metrics loading...



We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO/SrTiO oxide junction hosting a 4 nm-deep 2-dimensional electron system. At low graphene-oxide inter-layer bias, the two electron systems are electrically isolated, despite their small spatial separation. A very efficient reciprocal gating of the two neighboring 2-dimensional systems is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic field-effects and tunneling across the LaAlO barrier. The relevance of these results in the context of strongly coupled bilayer systems is discussed.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd