Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4953821
1.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007);
http://dx.doi.org/10.1038/nmat1849
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
2.
F. Bonaccorso, A. Lombardo, T. Hasan, Zh. Sun, L. Colombo, and A. C. Ferrari, Mater. Today 15, 564 (2012).
http://dx.doi.org/10.1016/S1369-7021(13)70014-2
3.
Y. Zheng, G. X. Ni, S. Bae, C. X. Cong, O. Kahya, C. T. Toh, H. R. Kim, D. Im, T. Yu, J. H. Ahn, B. H. Hong, and B. Ozyilmaz, Europhys. Lett. 93, 17002 (2011);
http://dx.doi.org/10.1209/0295-5075/93/17002
X. Hong, K. Zou, A. M. DaSilva, C. H. Ahn, and J. Zhu, Solid State Commun. 152, 1365 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.050
4.
D. F. Jin, A. Kumar, K. H. Fung, J. Xu, and N. X. Fang, Appl. Phys. Lett. 102, 201118 (2013).
http://dx.doi.org/10.1063/1.4807762
5.
J. Park, T. Back, W. C. Mitchel, S. S. Kim, S. Elhamri, J. Boeckl, S. B. Fairchild, R. Naik, and A. A. Voevodin, Sci. Rep. 5, 14374 (2015).
http://dx.doi.org/10.1038/srep14374
6.
H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche, and M. Chshiev, Phys. Rev. Lett. 110, 046603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.046603
7.
F. Li, T. Li, and X. Guo, ACS Appl. Mater. Interfaces 6, 1187 (2014);
http://dx.doi.org/10.1021/am404866r
M. Rocci, J. Tornos, A. Rivera-Calzada, Z. Sefrioui, M. Clement, E. Iborra, C. Leon, and J. Santamaria, Appl. Phys. Lett. 104, 102408 (2014).
http://dx.doi.org/10.1063/1.4868426
8.
A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
9.
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
10.
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
11.
P. D. Eerkes, W. G. Van Der Wiel, and H. Hilgenkamp, Appl. Phys. Lett. 103, 201603 (2013).
http://dx.doi.org/10.1063/1.4829555
12.
A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nat. Mater. 6, 493 (2007).
http://dx.doi.org/10.1038/nmat1931
13.
D. Stornaiuolo, C. Cantoni, G. M. De Luca, R. Di Capua, E. Di Gennaro, G. Ghiringhelli, B. Jouault, D. Marrè, D. Massarotti, F. M. Granozio, I. Pallecchi, C. Piamonteze, S. Rusponi, F. Tafuri, and M. Salluzzo, Nat. Mater. 15, 278 (2016).
http://dx.doi.org/10.1038/nmat4491
14.
M. B. Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, Phys. Rev. Lett. 104, 126802 (2010);
http://dx.doi.org/10.1103/PhysRevLett.104.126802
A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, Phys. Rev. Lett. 104, 126803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126803
15.
R. Arras, V. G. Ruiz, W. E. Pickett, and R. Pentcheva, Phys. Rev. B 85, 125404 (2012);
http://dx.doi.org/10.1103/PhysRevB.85.125404
E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, and M. Bibes, Nat. Commun. 5, 4291 (2014).
http://dx.doi.org/10.1038/ncomms5291
16.
B. Förg, C. Richter, and J. Mannhart, Appl. Phys. Lett. 100, 053506 (2012);
http://dx.doi.org/10.1063/1.3682102
M. Huijben, G. Koster, M. K. Kruize, S. Wenderich, J. Verbeeck, S. Bals, E. Slooten, B. Shi, H. J. A. Molegraaf, J. E. Kleibeuker, S. van Aert, J. B. Goedkoop, A. Brinkman, D. H. A. Blank, M. S. Golden, G. van Tendeloo, H. Hilgenkamp, and G. Rijnders, Adv. Funct. Mater. 23, 5240 (2013);
http://dx.doi.org/10.1002/adfm.201203355
Y. J. Shi, S. Wang, Y. Zhou, H. F. Ding, and D. Wu, Appl. Phys. Lett. 102, 071605 (2013).
http://dx.doi.org/10.1063/1.4793576
17.
A. Gamucci, D. Spirito, M. Carrega, B. Karmakar, A. Lombardo, M. Bruna, A. C. Ferrari, L. N. Pfeiffer, K. W. West, M. Polini, and V. Pellegrini, Nat. Commun. 5, 5824 (2014).
http://dx.doi.org/10.1038/ncomms6824
18.
M. Huang, G. Jnawali, J.-F. Hsu, S. Dhingra, H. Lee, S. Ryu, F. Bi, F. Ghahari, J. Ravichandran, L. Chen, P. Kim, C.-B. Eom, B. D’Urso, P. Irvin, and J. Levy, APL Mater. 3, 062502 (2015).
http://dx.doi.org/10.1063/1.4916098
19.
C. Cen, S. Thiel, J. Mannhart, and J. Levy, Science 323, 1026 (2009).
http://dx.doi.org/10.1126/science.1168294
20.
C. Cantoni, J. Gazquez, F. M. Granozio, M. P. Oxley, M. Varela, A. R. Lupini, S. J. Pennycook, C. Aruta, U. S. di Uccio, P. Perna, and D. Maccariello, Adv. Mater. 24, 3952 (2012);
http://dx.doi.org/10.1002/adma.201200667
C. Aruta, S. Amoruso, R. Bruzzese, X. Wang, D. Maccariello, F. M. Granozio, and U. S. di Uccio, Appl. Phys. Lett. 97, 252105 (2010).
http://dx.doi.org/10.1063/1.3529487
21.
V. Miseikis, D. Convertino, N. Mishra, M. Gemmi, T. Mashoff, S. Heun, N. Haghighian, F. Bisio, M. Canepa, V. Piazza, and C. Coletti, 2D Mater. 2, 014006 (2015).
http://dx.doi.org/10.1088/2053-1583/2/1/014006
22.
Y. Wang, Y. Zheng, X. Xu, E. Dubuisson, Q. Bao, J. Lu, and K. P. Loh, ACS Nano 5, 9927 (2011);
http://dx.doi.org/10.1021/nn203700w
L. Gao, W. Ren, H. Xu, L. Jin, Zh. Wang, T. Ma, L.-P. Ma, Zh. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, Nat. Commun. 3, 699 (2012).
http://dx.doi.org/10.1038/ncomms1702
23.
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006);
http://dx.doi.org/10.1103/PhysRevLett.97.187401
A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
24.
Y.-J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim, and P. Kim, Nano Lett. 9, 3430 (2009);
http://dx.doi.org/10.1021/nl901572a
P. W. Peacock and J. Robertson, J. Appl. Phys. 92, 4713 (2002).
http://dx.doi.org/10.1063/1.1506388
25.
G. Drera, G. Salvinelli, A. Brinkman, M. Huijben, G. Koster, H. Hilgenkamp, G. Rijnders, D. Visentin, and L. Sangaletti, Phys. Rev. B 87, 075435 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.075435
26.
U. Treske, N. Heming, M. Knupfer, B. Büchner, E. di Gennaro, A. Khare, U. S. di Uccio, F. M. Granozio, S. Krause, and A. Koitzsch, Sci. Rep. 5, 14506 (2015).
http://dx.doi.org/10.1038/srep14506
27.
W. J. Son, E. Cho, B. Lee, J. Lee, and S. Han, Phys. Rev. B 79, 245411 (2009);
http://dx.doi.org/10.1103/PhysRevB.79.245411
Z. S. Popovic, S. Satpathy, and R. M. Martin, Phys. Rev. Lett. 101, 256801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256801
28.
J. R. Tolsma, A. Principi, R. Asgari, M. Polini, and A. H. MacDonald, Phys. Rev. B 93, 045120 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.045120
29.
M. Salluzzo, J. Cezar, N. Brookes, V. Bisogni, G. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, Phys. Rev. Lett. 102, 166804 (2009);
http://dx.doi.org/10.1103/PhysRevLett.102.166804
C. Cancellieri, M. L. Reinle-Schmitt, M. Kobayashi, V. N. Strocov, P. R. Willmott, D. Fontaine, P. Ghosez, A. Filippetti, P. Delugas, and V. Fiorentini, Phys. Rev. B 89, 121412 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.121412
30.
See supplementary material at http://dx.doi.org/10.1063/1.4953821 for a more detailed description of the capacitance-voltage measurements and the electrostatic and transport models of the system and complete description of the experimental and theoretical analysis of the electrostatic problem of the junction and the WKB-tunneling model of the graphene-oxide 2DES transport.[Supplementary Material]
31.
G. Singh-Bhalla, C. Bell, J. Ravichandran, W. Siemons, Y. Hikita, S. Salahuddin, A. F. Hebard, H. Y. Hwang, and R. Ramesh, Nat. Phys. 7, 80 (2010).
http://dx.doi.org/10.1038/nphys1814
32.
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
33.
S. K. Kim, S.-I. Kim, H. Lim, D. S. Jeong, B. Kwon, S.-H. Baek, and J.-S. Kim, Sci. Rep. 5, 8023 (2015).
http://dx.doi.org/10.1038/srep08023
34.
C.-C. Tang, M.-Y. Li, L. J. Li, C. C. Chi, and J.-C. Chen, Appl. Phys. Lett. 101, 202104 (2012).
http://dx.doi.org/10.1063/1.4767387
35.
G. Jnawali, M. Huang, J.-F. Hsu, H. Lee, P. Irvin, C.-B. Eom, B. D’Urso, and J. Levy, e-print arXiv:1602.03128v1.
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4953821
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4953821
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4953821
2016-06-09
2016-09-26

Abstract

We report on the transport properties of hybrid devices obtained by depositing graphene on a LaAlO/SrTiO oxide junction hosting a 4 nm-deep 2-dimensional electron system. At low graphene-oxide inter-layer bias, the two electron systems are electrically isolated, despite their small spatial separation. A very efficient reciprocal gating of the two neighboring 2-dimensional systems is shown. A pronounced rectifying behavior is observed for larger bias values and ascribed to the interplay between electrostatic field-effects and tunneling across the LaAlO barrier. The relevance of these results in the context of strongly coupled bilayer systems is discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4953821.html;jsessionid=2bRvgM4uOzhFoXM7st4dkN_2.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4953821&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4953821&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4953821'
Top,Right1,Right2,Right3,