Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4953822
1.
D. A. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014).
2.
A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423426 (2004).
http://dx.doi.org/10.1038/nature02308
3.
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, “Tunable quasi-two-dimensional electron gases in oxide heterostructures,” Science 313, 19421945 (2006).
http://dx.doi.org/10.1126/science.1131091
4.
A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, “Electric field control of the LaAlO3/SrTiO3 interface ground state,” Nature 456, 624627 (2008).
http://dx.doi.org/10.1038/nature07576
5.
A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, “Tunable Rashba spin-orbit interaction at oxide interfaces,” Phys. Rev. Lett. 104, 126803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126803
6.
M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, “Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study,” Phys. Rev. Lett. 104, 126802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126802
7.
J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, “Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface,” Nat. Phys. 7, 767771 (2011).
http://dx.doi.org/10.1038/nphys2079
8.
L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, “Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces,” Nat. Phys. 7, 762766 (2011).
http://dx.doi.org/10.1038/nphys2080
9.
R. Pentcheva and W. E. Pickett, “Electronic phenomena at complex oxide interfaces: Insights from first principles,” J. Phys.: Condens. Matter 22, 043001 (2010).
http://dx.doi.org/10.1088/0953-8984/22/4/043001
10.
P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, “Interface physics in complex oxide heterostructures,” Annu. Rev. Condens. Matter Phys. 2, 141165 (2011).
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140445
11.
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, “Emergent phenomena at oxide interfaces,” Nat. Mater. 11, 103113 (2012).
http://dx.doi.org/10.1038/nmat3223
12.
J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, “Nanoscale phenomena in oxide heterostructures,” Annu. Rev. Mater. Res. 44, 117149 (2014).
http://dx.doi.org/10.1146/annurev-matsci-070813-113437
13.
N. Nakagawa, H. Y. Hwang, and D. A. Muller, “Why some interfaces cannot be sharp,” Nat. Mater. 5, 204209 (2006).
http://dx.doi.org/10.1038/nmat1569
14.
W. Harrison, E. Kraut, J. Waldrop, and R. Grant, “Polar heterojunction interfaces,” Phys. Rev. B 18, 44024410 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.4402
15.
L. Yu and A. Zunger, “A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces,” Nat. Commun. 5, 5118 (2014).
http://dx.doi.org/10.1038/ncomms6118
16.
P. Willmott, S. Pauli, R. Herger, C. Schlepütz, D. Martoccia, B. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, “Structural basis for the conducting interface between LaAlO3 and SrTiO3,” Phys. Rev. Lett. 99, 155502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.155502
17.
G. Herranz, M. Basletic, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: Origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98, 216803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.216803
18.
A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, and D. Winkle, “Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface,” Phys. Rev. B 75, 121404 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.121404
19.
W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, “Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping,” Phys. Rev. Lett. 98(19), 196802 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196802
20.
Z. Zhong, P. X. Xu, and P. J. Kelly, “Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces,” Phys. Rev. B 82, 165127 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165127
21.
Y. Li, S. N. Phattalung, S. Limpijumnong, J. Kim, and J. Yu, “Formation of oxygen vacancies and charge carriers induced in the n-type interface of a LaAlO3 overlayer on SrTiO3 (001),” Phys. Rev. B 84, 245307 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245307
22.
N. C. Bristowe, P. B. Littlewood, and E. Artacho, “Surface defects and conduction in polar oxide heterostructures,” Phys. Rev. B 83, 205405 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.205405
23.
Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, “Control of electronic conduction at an oxide heterointerface using surface polar adsorbates,” Nat. Commun. 2, 494 (2011).
http://dx.doi.org/10.1038/ncomms1501
24.
E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, and M. Bibes, “Suppression of the critical thickness threshold for conductivity at the LaAlO3/SrTiO3 interface,” Nat. Commun. 5, 4291 (2014).
http://dx.doi.org/10.1038/ncomms5291
25.
C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, “Nanoscale control of an interfacial metal-insulator transition at room temperature,” Nat. Mater. 7, 298302 (2008).
http://dx.doi.org/10.1038/nmat2136
26.
C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, “Influence of the growth conditions on the LaAIO3/SrTiO3 interface electronic properties,” Europhys. Lett. 91, 17004 (2010).
http://dx.doi.org/10.1209/0295-5075/91/17004
27.
M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, “LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces,” Nat. Commun. 4, 2351 (2013).
http://dx.doi.org/10.1038/ncomms3351
28.
J. P. Podkaminer, T. Hernandez, M. Huang, S. Ryu, C. W. Bark, S. H. Baek, J. C. Frederick, T. H. Kim, K. H. Cho, J. Levy, M. S. Rzchowski, and C. B. Eom, “Creation of a two-dimensional electron gas and conductivity switching of nanowires at the LaAlO3/SrTiO3 interface grown by 90 off-axis sputtering,” Appl. Phys. Lett. 103, 071604 (2013).
http://dx.doi.org/10.1063/1.4817921
29.
G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta, “High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces,” Sci. Rep. 2, 758 (2012).
http://dx.doi.org/10.1038/srep00758
30.
A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W. M. , A. Roy Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, and T. Venkatesan, “Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface,” Nat. Commun. 4, 1838 (2013).
http://dx.doi.org/10.1038/ncomms2804
31.
D. Pesquera, M. Scigaj, P. Gargiani, A. Barla, J. Herrero-Martín, E. Pellegrin, S. M. Valvidares, J. Gázquez, M. Varela, N. Dix, J. Fontcuberta, F. Sánchez, and G. Herranz, “Two-dimensional electron gases at LaAlO3/SrTiO3 interfaces: Orbital symmetry and hierarchy engineered by crystal orientation,” Phys. Rev. Lett. 113, 156802 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.156802
32.
Y. Hotta, T. Susaki, and H. Hwang, “Polar discontinuity doping of the LaVO3/SrTiO3 interface,” Phys. Rev. Lett. 99, 236805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.236805
33.
J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, “Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3,” Nat. Commun. 1, 89 (2010).
http://dx.doi.org/10.1038/ncomms1084
34.
P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marré, C. Cantoni, J. Gazquez, M. Varela, S. J. Pennycook, and F. Miletto Granozio, “Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure,” Appl. Phys. Lett. 97, 152111 (2010).
http://dx.doi.org/10.1063/1.3496440
35.
M. Minohara, T. Tachikawa, Y. Nakanishi, Y. Hikita, L. F. Kourkoutis, J.-S. Lee, C. Kao, M. Yoshita, H. Akiyama, C. Bell, and H. Y. Hwang, “Atomically engineered metal-insulator transition at the TiO2/LaAlO3 heterointerface,” Nano Lett. 14, 67436746 (2014).
http://dx.doi.org/10.1021/nl5039192
36.
K. Zou, S. Ismail-Beigi, K. Kisslinger, X. Shen, D. Su, F. J. Walker, and C. H. Ahn, “LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system,” APL Mater. 3, 036104 (2015).
http://dx.doi.org/10.1063/1.4914310
37.
M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, “Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 102, 166804 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.166804
38.
Z. Popović, S. Satpathy, and R. Martin, “Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface,” Phys. Rev. Lett. 101, 256801 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.256801
39.
P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, and Ph. Ghosez, “Spontaneous 2-dimensional carrier confinement at the n-Type SrTiO3/LaAlO3 interface,” Phys. Rev. Lett. 106, 166807 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.166807
40.
A. Fête, S. Gariglio, A. Caviglia, J.-M. Triscone, and M. Gabay, “Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure,” Phys. Rev. B 86, 201105 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.201105
41.
A. Joshua, S. Pecker, J. Ruhman, E. Altman, and S. Ilani, “A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface,” Nat. Commun. 3, 1129 (2012).
http://dx.doi.org/10.1038/ncomms2116
42.
R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).
43.
G. Khalsa, B. Lee, and A. H. Macdonald, “Theory of t2g electron-gas Rashba interactions,” Phys. Rev. B 88, 041302 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.041302
44.
Z. Zhong, A. Tóth, and K. Held, “Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces,” Phys. Rev. B 87, 161102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.161102
45.
M. Diez, A. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N. Bovenzi, C. W. J. Beenakker, and A. D. Caviglia, “Giant negative magnetoresistance driven by spin-orbit coupling at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 115, 016803 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.016803
46.
D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, “Coexistence of superconductivity and ferromagnetism in two dimensions,” Phys. Rev. Lett. 107, 056802 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.056802
47.
J.-S. Lee, Y. W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, and C.-C. Kao, “Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface,” Nat. Mater. 12, 703706 (2013).
http://dx.doi.org/10.1038/nmat3674
48.
M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G. M. De Luca, M. Minola, D. Marré, A. Gadaleta, H. Brune, F. Nolting, N. B. Brookes, and G. Ghiringhelli, “Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures,” Phys. Rev. Lett. 111, 087204 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.087204
49.
M. Fitzsimmons, N. Hengartner, S. Singh, M. Zhernenkov, F. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H. Molegraaf, J. de la Venta, and I. Schuller, “Upper limit to magnetism in LaAlO3/SrTiO3 heterostructures,” Phys. Rev. Lett. 107, 217201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.217201
50.
F. Bi, M. Huang, S. Ryu, H. Lee, C.-W. Bark, C.-B. Eom, P. Irvin, and J. Levy, “Room-temperature electronically-controlled ferromagnetism at the LaAlO3/SrTiO3 interface,” Nat. Commun. 5, 5019 (2014).
http://dx.doi.org/10.1038/ncomms6019
51.
N. Pavlenko, T. Kopp, E. Y. Tsymbal, J. Mannhart, and G. A. Sawatzky, “Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction,” Phys. Rev. B 86, 064431 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.064431
52.
K. Michaeli, A. C. Potter, and P. A. Lee, “Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: Possibility of finite momentum pairing,” Phys. Rev. Lett. 108, 117003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.117003
53.
V. Jaccarino and M. Peter, “Ultra-high-field superconductivity,” Phys. Rev. Lett. 9, 290292 (1962).
http://dx.doi.org/10.1103/PhysRevLett.9.290
54.
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, “Superconducting interfaces between insulating oxides,” Science 317, 11961199 (2007).
http://dx.doi.org/10.1126/science.1146006
55.
L. Benfatto, C. Castellani, and T. Giamarchi, “Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects,” Phys. Rev. B 80, 214506 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.214506
56.
S. Caprara, M. Grilli, L. Benfatto, and C. Castellani, “Effective medium theory for superconducting layers: A systematic analysis including space correlation effects,” Phys. Rev. B 84, 014514 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.014514
57.
N. Reyren, S. Gariglio, A. D. Caviglia, D. Jaccard, T. Schneider, and J.-M. Triscone, “Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 94, 112506 (2009).
http://dx.doi.org/10.1063/1.3100777
58.
C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, “Interface superconductor with gap behaviour like a high-temperature superconductor,” Nature 502, 528531 (2013).
http://dx.doi.org/10.1038/nature12494
59.
G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.-B. Eom, C. S. Hellberg, and J. Levy, “Electron pairing without superconductivity,” Nature 521, 196199 (2015).
http://dx.doi.org/10.1038/nature14398
60.
M. P. A. Fisher and G. Grinstein, “Quantum critical phenomena in charged superconductors,” Phys. Rev. Lett. 60, 208211 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.208
61.
S. Hurand, J. Biscaras, N. Bergeal, C. Feuillet-Palma, G. Singh, A. Jouan, A. Rastogi, A. Dogra, P. Kumar, R. C. Budhani, N. Scopigno, S. Caprara, M. Grilli, and J. Lesueur, “Density driven fluctuations in a two-dimensional superconductor,” e-print arXiv:1506:06874 (2015).
62.
J. Schooley, W. Hosler, E. Ambler, J. Becker, M. Cohen, and C. Koonce, “Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3,” Phys. Rev. Lett. 14, 305307 (1965).
http://dx.doi.org/10.1103/PhysRevLett.14.305
63.
C. S. Koonce, M. L. Cohen, J. Schooley, W. R. Hosler, and E. R. Pfeiffer, “Superconducting transition temperatures of semiconducting SrTiO3,” Phys. Rev. 163, 380 (1967).
http://dx.doi.org/10.1103/PhysRev.163.380
64.
X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S. Krämer, M. Nardone, B. Fauqué, and K. Behnia, “Critical doping for the onset of a two-band superconducting ground state in SrTiO3−δ,” Phys. Rev. Lett. 112, 207002 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.207002
65.
J. Bert, K. Nowack, B. Kalisky, H. Noad, J. Kirtley, C. Bell, H. Sato, M. Hosoda, Y. Hikita, H. Hwang, and K. Moler, “Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface,” Phys. Rev. B 86, 060503 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.060503
66.
G. Herranz, G. Singh, N. Bergeal, A. Jouan, J. Lesueur, J. Gázquez, M. Varela, M. Scigaj, N. Dix, F. Sánchez, and J. Fontcuberta, “Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy,” Nat. Commun. 6, 6028 (2015).
http://dx.doi.org/10.1038/ncomms7028
67.
A. Fête, S. Gariglio, and J.-M. Triscone (unpublished).
68.
C. Bell, S. Harashima, Y. Kozuka, M. Kim, B. G. Kim, Y. Hikita, and H. Y. Hwang, “Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 103, 226802 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.226802
69.
A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpurgo, and J.-M. Triscone, “Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 105, 236802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.236802
70.
M. Ben Shalom, A. Ron, A. Palevski, and Y. Dagan, “Shubnikov-de Haas oscillations in SrTiO3/LaAlO3 interface,” Phys. Rev. Lett. 105, 206401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.206401
71.
A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo, M. Gabay, and J. M. Triscone, “Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface,” New J. Phys. 16, 112002 (2014).
http://dx.doi.org/10.1088/1367-2630/16/11/112002
72.
Y. Xie, C. Bell, M. Kim, H. Inoue, Y. Hikita, and H. Y. Hwang, “Quantum longitudinal and Hall transport at the LaAlO3/SrTiO3 interface at low electron densities,” Solid State Commun. 197, 2529 (2014).
http://dx.doi.org/10.1016/j.ssc.2014.08.006
73.
Y. Z. Chen, F. Trier, T. Wijnands, R. J. Green, N. Gauquelin, R. Egoavil, D. V. Christensen, G. Koster, M. Huijben, N. Bovet, S. Macke, F. He, R. Sutarto, N. H. Andersen, J. A. Sulpizio, M. Honig, G. E. D. K. Prawiroatmodjo, T. S. Jespersen, S. Linderoth, S. Ilani, J. Verbeeck, G. Van Tendeloo, G. Rijnders, G. A. Sawatzky, and N. Pryds, “Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping,” Nat. Mater. 14, 801806 (2015).
http://dx.doi.org/10.1038/nmat4303
74.
A. Fête, C. Cancellieri, D. Li, D. Stornaiuolo, A. D. Caviglia, S. Gariglio, and J.-M. Triscone, “Growth-induced electron mobility enhancement at the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 106, 051604 (2015).
http://dx.doi.org/10.1063/1.4907676
75.
A. McCollam, S. Wenderich, M. K. Kruize, V. K. Guduru, H. J. A. Molegraaf, M. Huijben, G. Koster, D. H. A. Blank, G. Rijnders, A. Brinkman, H. Hilgenkamp, U. Zeitler, and J. C. Maan, “Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface,” APL Mater. 2, 022102 (2014).
http://dx.doi.org/10.1063/1.4863786
76.
I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.-M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, “Giant oscillating thermopower at oxide interfaces,” Nat. Commun. 6, 6678 (2015).
http://dx.doi.org/10.1038/ncomms7678
77.
N. Reyren, M. Bibes, E. Lesne, J. M. George, C. Deranlot, S. Collin, A. Barthélémy, and H. Jaffrès, “Gate-controlled spin injection at LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 108, 186802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186802
78.
A. G. Swartz, S. Harashima, Y. Xie, D. Lu, B. Kim, C. Bell, Y. Hikita, and H. Y. Hwang, “Spin-dependent transport across Co/LaAlO3/SrTiO3 heterojunctions,” Appl. Phys. Lett. 105, 032406 (2014).
http://dx.doi.org/10.1063/1.4891174
79.
J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, “Creation of a two-dimensional electron gas at an oxide interface on silicon,” Nat. Commun. 1, 94 (2010).
http://dx.doi.org/10.1038/ncomms1096
80.
C. W. Bark, D. a. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, “Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain,” Proc. Natl. Acad. Sci. U. S. A. 108, 47204724 (2011).
http://dx.doi.org/10.1073/pnas.1014849108
81.
D. Li, S. Gariglio, C. Cancellieri, A. Fête, D. Stornaiuolo, and J.-M. Triscone, “Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films,” APL Mater. 2, 012102 (2014).
http://dx.doi.org/10.1063/1.4854335
82.
D. Stornaiuolo, S. Gariglio, N. J. G. Couto, A. Fête, A. D. Caviglia, G. Seyfarth, D. Jaccard, A. F. Morpurgo, and J.-M. Triscone, “In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures,” Appl. Phys. Lett. 101, 222601 (2012).
http://dx.doi.org/10.1063/1.4768936
83.
P. P. Aurino, A. Kalabukhov, N. Tuzla, E. Olsson, T. Claeson, and D. Winkler, “Nano-patterning of the electron gas at the LaAlO3/SrTiO3 interface using low-energy ion beam irradiation,” Appl. Phys. Lett. 102, 201610 (2013).
http://dx.doi.org/10.1063/1.4807785
84.
A. Ron and Y. Dagan, “One-dimensional quantum wire formed at the boundary between two insulating LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 112, 136801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.136801
85.
P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, “Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces,” Appl. Phys. Lett. 99, 232116 (2011).
http://dx.doi.org/10.1063/1.3669402
86.
M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, “Atomic control of the SrTiO3 crystal surface,” Science 266, 15401542 (1994).
http://dx.doi.org/10.1126/science.266.5190.1540
87.
G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide,” Appl. Phys. Lett. 73, 29202922 (1998).
http://dx.doi.org/10.1063/1.122630
88.
The transmission electron microscope image was taken by G. Tieri, A. Gloter and O. Stéphan at LPS, Université Paris-Sud.
89.
S. Gariglio, A. Fête, and J.-M. Triscone, “Electron confinement at the LaAlO3/SrTiO3 interface,” J. Phys.: Condens. Matter 27, 283201 (2015).
http://dx.doi.org/10.1088/0953-8984/27/28/283201
90.
F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. W. Park, C. B. Eom, and J. Levy, “‘Water-cycle’ mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 97, 173110 (2010).
http://dx.doi.org/10.1063/1.3506509
91.
C. Cen, S. Thiel, J. Mannhart, and J. Levy, “Oxide nanoelectronics on demand,” Science 323, 10261030 (2009).
http://dx.doi.org/10.1126/science.1168294
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4953822
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4953822
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4953822
2016-06-23
2016-12-04

Abstract

In this review, we focus on the celebrated interface between two band insulators, LaAlO and SrTiO, that was found to be conducting, superconducting, and to display a strong spin-orbit coupling. We discuss the formation of the 2-dimensional electron liquid at this interface, the particular electronic structure linked to the carrier confinement, the transport properties, and the signatures of magnetism. We then highlight distinctive characteristics of the superconducting regime, such as the electric field effect control of the carrier density, the unique tunability observed in this system, and the role of the electronic subband structure. Finally we compare the behavior of versus 2D doping with the dome-like behavior of the 3D bulk superconductivity observed in doped SrTiO. This comparison reveals surprising differences when the behavior is analyzed in terms of the 3D carrier density for the interface and the bulk.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4953822.html;jsessionid=8llN-B-VfwpKuPdkKEu8sFqQ.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4953822&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4953822&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4953822'
Top,Right1,Right2,Right3,