Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
D. A. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014).
A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface,” Nature 427, 423426 (2004).
S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, “Tunable quasi-two-dimensional electron gases in oxide heterostructures,” Science 313, 19421945 (2006).
A. D. Caviglia, S. Gariglio, N. Reyren, D. Jaccard, T. Schneider, M. Gabay, S. Thiel, G. Hammerl, J. Mannhart, and J.-M. Triscone, “Electric field control of the LaAlO3/SrTiO3 interface ground state,” Nature 456, 624627 (2008).
A. D. Caviglia, M. Gabay, S. Gariglio, N. Reyren, C. Cancellieri, and J.-M. Triscone, “Tunable Rashba spin-orbit interaction at oxide interfaces,” Phys. Rev. Lett. 104, 126803 (2010).
M. Ben Shalom, M. Sachs, D. Rakhmilevitch, A. Palevski, and Y. Dagan, “Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: A magnetotransport study,” Phys. Rev. Lett. 104, 126802 (2010).
J. A. Bert, B. Kalisky, C. Bell, M. Kim, Y. Hikita, H. Y. Hwang, and K. A. Moler, “Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface,” Nat. Phys. 7, 767771 (2011).
L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, “Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces,” Nat. Phys. 7, 762766 (2011).
R. Pentcheva and W. E. Pickett, “Electronic phenomena at complex oxide interfaces: Insights from first principles,” J. Phys.: Condens. Matter 22, 043001 (2010).
P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, “Interface physics in complex oxide heterostructures,” Annu. Rev. Condens. Matter Phys. 2, 141165 (2011).
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, “Emergent phenomena at oxide interfaces,” Nat. Mater. 11, 103113 (2012).
J. A. Sulpizio, S. Ilani, P. Irvin, and J. Levy, “Nanoscale phenomena in oxide heterostructures,” Annu. Rev. Mater. Res. 44, 117149 (2014).
N. Nakagawa, H. Y. Hwang, and D. A. Muller, “Why some interfaces cannot be sharp,” Nat. Mater. 5, 204209 (2006).
W. Harrison, E. Kraut, J. Waldrop, and R. Grant, “Polar heterojunction interfaces,” Phys. Rev. B 18, 44024410 (1978).
L. Yu and A. Zunger, “A polarity-induced defect mechanism for conductivity and magnetism at polar-nonpolar oxide interfaces,” Nat. Commun. 5, 5118 (2014).
P. Willmott, S. Pauli, R. Herger, C. Schlepütz, D. Martoccia, B. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby, “Structural basis for the conducting interface between LaAlO3 and SrTiO3,” Phys. Rev. Lett. 99, 155502 (2007).
G. Herranz, M. Basletic, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzic, J.-M. Broto, A. Barthélémy, and A. Fert, “High mobility in LaAlO3/SrTiO3 heterostructures: Origin, dimensionality, and perspectives,” Phys. Rev. Lett. 98, 216803 (2007).
A. Kalabukhov, R. Gunnarsson, J. Borjesson, E. Olsson, T. Claeson, and D. Winkle, “Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface,” Phys. Rev. B 75, 121404 (2007).
W. Siemons, G. Koster, H. Yamamoto, W. A. Harrison, G. Lucovsky, T. H. Geballe, D. H. A. Blank, and M. R. Beasley, “Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: Possibility of intrinsic doping,” Phys. Rev. Lett. 98(19), 196802 (2007).
Z. Zhong, P. X. Xu, and P. J. Kelly, “Polarity-induced oxygen vacancies at LaAlO3/SrTiO3 interfaces,” Phys. Rev. B 82, 165127 (2010).
Y. Li, S. N. Phattalung, S. Limpijumnong, J. Kim, and J. Yu, “Formation of oxygen vacancies and charge carriers induced in the n-type interface of a LaAlO3 overlayer on SrTiO3 (001),” Phys. Rev. B 84, 245307 (2011).
N. C. Bristowe, P. B. Littlewood, and E. Artacho, “Surface defects and conduction in polar oxide heterostructures,” Phys. Rev. B 83, 205405 (2011).
Y. Xie, Y. Hikita, C. Bell, and H. Y. Hwang, “Control of electronic conduction at an oxide heterointerface using surface polar adsorbates,” Nat. Commun. 2, 494 (2011).
E. Lesne, N. Reyren, D. Doennig, R. Mattana, H. Jaffrès, V. Cros, F. Petroff, F. Choueikani, P. Ohresser, R. Pentcheva, A. Barthélémy, and M. Bibes, “Suppression of the critical thickness threshold for conductivity at the LaAlO3/SrTiO3 interface,” Nat. Commun. 5, 4291 (2014).
C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, “Nanoscale control of an interfacial metal-insulator transition at room temperature,” Nat. Mater. 7, 298302 (2008).
C. Cancellieri, N. Reyren, S. Gariglio, A. D. Caviglia, A. Fête, and J.-M. Triscone, “Influence of the growth conditions on the LaAIO3/SrTiO3 interface electronic properties,” Europhys. Lett. 91, 17004 (2010).
M. P. Warusawithana, C. Richter, J. A. Mundy, P. Roy, J. Ludwig, S. Paetel, T. Heeg, A. Pawlicki, L. F. Kourkoutis, M. Zheng, M. Lee, B. Mulcahy, W. Zander, Y. Zhu, J. Schubert, J. N. Eckstein, D. A. Muller, C. S. Hellberg, J. Mannhart, and D. G. Schlom, “LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces,” Nat. Commun. 4, 2351 (2013).
J. P. Podkaminer, T. Hernandez, M. Huang, S. Ryu, C. W. Bark, S. H. Baek, J. C. Frederick, T. H. Kim, K. H. Cho, J. Levy, M. S. Rzchowski, and C. B. Eom, “Creation of a two-dimensional electron gas and conductivity switching of nanowires at the LaAlO3/SrTiO3 interface grown by 90 off-axis sputtering,” Appl. Phys. Lett. 103, 071604 (2013).
G. Herranz, F. Sánchez, N. Dix, M. Scigaj, and J. Fontcuberta, “High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces,” Sci. Rep. 2, 758 (2012).
A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. Gopinadhan, W. M. , A. Roy Barman, Z. Q. Liu, A. Srivastava, S. Saha, Y. L. Zhao, S. W. Zeng, S. Dhar, E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, and T. Venkatesan, “Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface,” Nat. Commun. 4, 1838 (2013).
D. Pesquera, M. Scigaj, P. Gargiani, A. Barla, J. Herrero-Martín, E. Pellegrin, S. M. Valvidares, J. Gázquez, M. Varela, N. Dix, J. Fontcuberta, F. Sánchez, and G. Herranz, “Two-dimensional electron gases at LaAlO3/SrTiO3 interfaces: Orbital symmetry and hierarchy engineered by crystal orientation,” Phys. Rev. Lett. 113, 156802 (2014).
Y. Hotta, T. Susaki, and H. Hwang, “Polar discontinuity doping of the LaVO3/SrTiO3 interface,” Phys. Rev. Lett. 99, 236805 (2007).
J. Biscaras, N. Bergeal, A. Kushwaha, T. Wolf, A. Rastogi, R. C. Budhani, and J. Lesueur, “Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3,” Nat. Commun. 1, 89 (2010).
P. Perna, D. Maccariello, M. Radovic, U. Scotti di Uccio, I. Pallecchi, M. Codda, D. Marré, C. Cantoni, J. Gazquez, M. Varela, S. J. Pennycook, and F. Miletto Granozio, “Conducting interfaces between band insulating oxides: The LaGaO3/SrTiO3 heterostructure,” Appl. Phys. Lett. 97, 152111 (2010).
M. Minohara, T. Tachikawa, Y. Nakanishi, Y. Hikita, L. F. Kourkoutis, J.-S. Lee, C. Kao, M. Yoshita, H. Akiyama, C. Bell, and H. Y. Hwang, “Atomically engineered metal-insulator transition at the TiO2/LaAlO3 heterointerface,” Nano Lett. 14, 67436746 (2014).
K. Zou, S. Ismail-Beigi, K. Kisslinger, X. Shen, D. Su, F. J. Walker, and C. H. Ahn, “LaTiO3/KTaO3 interfaces: A new two-dimensional electron gas system,” APL Mater. 3, 036104 (2015).
M. Salluzzo, J. C. Cezar, N. B. Brookes, V. Bisogni, G. M. De Luca, C. Richter, S. Thiel, J. Mannhart, M. Huijben, A. Brinkman, G. Rijnders, and G. Ghiringhelli, “Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 102, 166804 (2009).
Z. Popović, S. Satpathy, and R. Martin, “Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface,” Phys. Rev. Lett. 101, 256801 (2008).
P. Delugas, A. Filippetti, V. Fiorentini, D. I. Bilc, D. Fontaine, and Ph. Ghosez, “Spontaneous 2-dimensional carrier confinement at the n-Type SrTiO3/LaAlO3 interface,” Phys. Rev. Lett. 106, 166807 (2011).
A. Fête, S. Gariglio, A. Caviglia, J.-M. Triscone, and M. Gabay, “Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure,” Phys. Rev. B 86, 201105 (2012).
A. Joshua, S. Pecker, J. Ruhman, E. Altman, and S. Ilani, “A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface,” Nat. Commun. 3, 1129 (2012).
R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, Heidelberg, 2003).
G. Khalsa, B. Lee, and A. H. Macdonald, “Theory of t2g electron-gas Rashba interactions,” Phys. Rev. B 88, 041302 (2013).
Z. Zhong, A. Tóth, and K. Held, “Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces,” Phys. Rev. B 87, 161102 (2013).
M. Diez, A. Monteiro, G. Mattoni, E. Cobanera, T. Hyart, E. Mulazimoglu, N. Bovenzi, C. W. J. Beenakker, and A. D. Caviglia, “Giant negative magnetoresistance driven by spin-orbit coupling at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 115, 016803 (2015).
D. A. Dikin, M. Mehta, C. W. Bark, C. M. Folkman, C. B. Eom, and V. Chandrasekhar, “Coexistence of superconductivity and ferromagnetism in two dimensions,” Phys. Rev. Lett. 107, 056802 (2011).
J.-S. Lee, Y. W. Xie, H. K. Sato, C. Bell, Y. Hikita, H. Y. Hwang, and C.-C. Kao, “Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface,” Nat. Mater. 12, 703706 (2013).
M. Salluzzo, S. Gariglio, D. Stornaiuolo, V. Sessi, S. Rusponi, C. Piamonteze, G. M. De Luca, M. Minola, D. Marré, A. Gadaleta, H. Brune, F. Nolting, N. B. Brookes, and G. Ghiringhelli, “Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures,” Phys. Rev. Lett. 111, 087204 (2013).
M. Fitzsimmons, N. Hengartner, S. Singh, M. Zhernenkov, F. Bruno, J. Santamaria, A. Brinkman, M. Huijben, H. Molegraaf, J. de la Venta, and I. Schuller, “Upper limit to magnetism in LaAlO3/SrTiO3 heterostructures,” Phys. Rev. Lett. 107, 217201 (2011).
F. Bi, M. Huang, S. Ryu, H. Lee, C.-W. Bark, C.-B. Eom, P. Irvin, and J. Levy, “Room-temperature electronically-controlled ferromagnetism at the LaAlO3/SrTiO3 interface,” Nat. Commun. 5, 5019 (2014).
N. Pavlenko, T. Kopp, E. Y. Tsymbal, J. Mannhart, and G. A. Sawatzky, “Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction,” Phys. Rev. B 86, 064431 (2012).
K. Michaeli, A. C. Potter, and P. A. Lee, “Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: Possibility of finite momentum pairing,” Phys. Rev. Lett. 108, 117003 (2012).
V. Jaccarino and M. Peter, “Ultra-high-field superconductivity,” Phys. Rev. Lett. 9, 290292 (1962).
N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, “Superconducting interfaces between insulating oxides,” Science 317, 11961199 (2007).
L. Benfatto, C. Castellani, and T. Giamarchi, “Broadening of the Berezinskii-Kosterlitz-Thouless superconducting transition by inhomogeneity and finite-size effects,” Phys. Rev. B 80, 214506 (2009).
S. Caprara, M. Grilli, L. Benfatto, and C. Castellani, “Effective medium theory for superconducting layers: A systematic analysis including space correlation effects,” Phys. Rev. B 84, 014514 (2011).
N. Reyren, S. Gariglio, A. D. Caviglia, D. Jaccard, T. Schneider, and J.-M. Triscone, “Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 94, 112506 (2009).
C. Richter, H. Boschker, W. Dietsche, E. Fillis-Tsirakis, R. Jany, F. Loder, L. F. Kourkoutis, D. A. Muller, J. R. Kirtley, C. W. Schneider, and J. Mannhart, “Interface superconductor with gap behaviour like a high-temperature superconductor,” Nature 502, 528531 (2013).
G. Cheng, M. Tomczyk, S. Lu, J. P. Veazey, M. Huang, P. Irvin, S. Ryu, H. Lee, C.-B. Eom, C. S. Hellberg, and J. Levy, “Electron pairing without superconductivity,” Nature 521, 196199 (2015).
M. P. A. Fisher and G. Grinstein, “Quantum critical phenomena in charged superconductors,” Phys. Rev. Lett. 60, 208211 (1988).
S. Hurand, J. Biscaras, N. Bergeal, C. Feuillet-Palma, G. Singh, A. Jouan, A. Rastogi, A. Dogra, P. Kumar, R. C. Budhani, N. Scopigno, S. Caprara, M. Grilli, and J. Lesueur, “Density driven fluctuations in a two-dimensional superconductor,” e-print arXiv:1506:06874 (2015).
J. Schooley, W. Hosler, E. Ambler, J. Becker, M. Cohen, and C. Koonce, “Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3,” Phys. Rev. Lett. 14, 305307 (1965).
C. S. Koonce, M. L. Cohen, J. Schooley, W. R. Hosler, and E. R. Pfeiffer, “Superconducting transition temperatures of semiconducting SrTiO3,” Phys. Rev. 163, 380 (1967).
X. Lin, G. Bridoux, A. Gourgout, G. Seyfarth, S. Krämer, M. Nardone, B. Fauqué, and K. Behnia, “Critical doping for the onset of a two-band superconducting ground state in SrTiO3−δ,” Phys. Rev. Lett. 112, 207002 (2014).
J. Bert, K. Nowack, B. Kalisky, H. Noad, J. Kirtley, C. Bell, H. Sato, M. Hosoda, Y. Hikita, H. Hwang, and K. Moler, “Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface,” Phys. Rev. B 86, 060503 (2012).
G. Herranz, G. Singh, N. Bergeal, A. Jouan, J. Lesueur, J. Gázquez, M. Varela, M. Scigaj, N. Dix, F. Sánchez, and J. Fontcuberta, “Engineering two-dimensional superconductivity and Rashba spin–orbit coupling in LaAlO3/SrTiO3 quantum wells by selective orbital occupancy,” Nat. Commun. 6, 6028 (2015).
A. Fête, S. Gariglio, and J.-M. Triscone (unpublished).
C. Bell, S. Harashima, Y. Kozuka, M. Kim, B. G. Kim, Y. Hikita, and H. Y. Hwang, “Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface,” Phys. Rev. Lett. 103, 226802 (2009).
A. D. Caviglia, S. Gariglio, C. Cancellieri, B. Sacépé, A. Fête, N. Reyren, M. Gabay, A. F. Morpurgo, and J.-M. Triscone, “Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 105, 236802 (2010).
M. Ben Shalom, A. Ron, A. Palevski, and Y. Dagan, “Shubnikov-de Haas oscillations in SrTiO3/LaAlO3 interface,” Phys. Rev. Lett. 105, 206401 (2010).
A. Fête, S. Gariglio, C. Berthod, D. Li, D. Stornaiuolo, M. Gabay, and J. M. Triscone, “Large modulation of the Shubnikov-de Haas oscillations by the Rashba interaction at the LaAlO3/SrTiO3 interface,” New J. Phys. 16, 112002 (2014).
Y. Xie, C. Bell, M. Kim, H. Inoue, Y. Hikita, and H. Y. Hwang, “Quantum longitudinal and Hall transport at the LaAlO3/SrTiO3 interface at low electron densities,” Solid State Commun. 197, 2529 (2014).
Y. Z. Chen, F. Trier, T. Wijnands, R. J. Green, N. Gauquelin, R. Egoavil, D. V. Christensen, G. Koster, M. Huijben, N. Bovet, S. Macke, F. He, R. Sutarto, N. H. Andersen, J. A. Sulpizio, M. Honig, G. E. D. K. Prawiroatmodjo, T. S. Jespersen, S. Linderoth, S. Ilani, J. Verbeeck, G. Van Tendeloo, G. Rijnders, G. A. Sawatzky, and N. Pryds, “Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping,” Nat. Mater. 14, 801806 (2015).
A. Fête, C. Cancellieri, D. Li, D. Stornaiuolo, A. D. Caviglia, S. Gariglio, and J.-M. Triscone, “Growth-induced electron mobility enhancement at the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 106, 051604 (2015).
A. McCollam, S. Wenderich, M. K. Kruize, V. K. Guduru, H. J. A. Molegraaf, M. Huijben, G. Koster, D. H. A. Blank, G. Rijnders, A. Brinkman, H. Hilgenkamp, U. Zeitler, and J. C. Maan, “Quantum oscillations and subband properties of the two-dimensional electron gas at the LaAlO3/SrTiO3 interface,” APL Mater. 2, 022102 (2014).
I. Pallecchi, F. Telesio, D. Li, A. Fête, S. Gariglio, J.-M. Triscone, A. Filippetti, P. Delugas, V. Fiorentini, and D. Marré, “Giant oscillating thermopower at oxide interfaces,” Nat. Commun. 6, 6678 (2015).
N. Reyren, M. Bibes, E. Lesne, J. M. George, C. Deranlot, S. Collin, A. Barthélémy, and H. Jaffrès, “Gate-controlled spin injection at LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 108, 186802 (2012).
A. G. Swartz, S. Harashima, Y. Xie, D. Lu, B. Kim, C. Bell, Y. Hikita, and H. Y. Hwang, “Spin-dependent transport across Co/LaAlO3/SrTiO3 heterojunctions,” Appl. Phys. Lett. 105, 032406 (2014).
J. W. Park, D. F. Bogorin, C. Cen, D. A. Felker, Y. Zhang, C. T. Nelson, C. W. Bark, C. M. Folkman, X. Q. Pan, M. S. Rzchowski, J. Levy, and C. B. Eom, “Creation of a two-dimensional electron gas at an oxide interface on silicon,” Nat. Commun. 1, 94 (2010).
C. W. Bark, D. a. Felker, Y. Wang, Y. Zhang, H. W. Jang, C. M. Folkman, J. W. Park, S. H. Baek, H. Zhou, D. D. Fong, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom, “Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain,” Proc. Natl. Acad. Sci. U. S. A. 108, 47204724 (2011).
D. Li, S. Gariglio, C. Cancellieri, A. Fête, D. Stornaiuolo, and J.-M. Triscone, “Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films,” APL Mater. 2, 012102 (2014).
D. Stornaiuolo, S. Gariglio, N. J. G. Couto, A. Fête, A. D. Caviglia, G. Seyfarth, D. Jaccard, A. F. Morpurgo, and J.-M. Triscone, “In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures,” Appl. Phys. Lett. 101, 222601 (2012).
P. P. Aurino, A. Kalabukhov, N. Tuzla, E. Olsson, T. Claeson, and D. Winkler, “Nano-patterning of the electron gas at the LaAlO3/SrTiO3 interface using low-energy ion beam irradiation,” Appl. Phys. Lett. 102, 201610 (2013).
A. Ron and Y. Dagan, “One-dimensional quantum wire formed at the boundary between two insulating LaAlO3/SrTiO3 interfaces,” Phys. Rev. Lett. 112, 136801 (2014).
P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, “Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces,” Appl. Phys. Lett. 99, 232116 (2011).
M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma, “Atomic control of the SrTiO3 crystal surface,” Science 266, 15401542 (1994).
G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, “Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide,” Appl. Phys. Lett. 73, 29202922 (1998).
The transmission electron microscope image was taken by G. Tieri, A. Gloter and O. Stéphan at LPS, Université Paris-Sud.
S. Gariglio, A. Fête, and J.-M. Triscone, “Electron confinement at the LaAlO3/SrTiO3 interface,” J. Phys.: Condens. Matter 27, 283201 (2015).
F. Bi, D. F. Bogorin, C. Cen, C. W. Bark, J. W. Park, C. B. Eom, and J. Levy, “‘Water-cycle’ mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface,” Appl. Phys. Lett. 97, 173110 (2010).
C. Cen, S. Thiel, J. Mannhart, and J. Levy, “Oxide nanoelectronics on demand,” Science 323, 10261030 (2009).

Data & Media loading...


Article metrics loading...



In this review, we focus on the celebrated interface between two band insulators, LaAlO and SrTiO, that was found to be conducting, superconducting, and to display a strong spin-orbit coupling. We discuss the formation of the 2-dimensional electron liquid at this interface, the particular electronic structure linked to the carrier confinement, the transport properties, and the signatures of magnetism. We then highlight distinctive characteristics of the superconducting regime, such as the electric field effect control of the carrier density, the unique tunability observed in this system, and the role of the electronic subband structure. Finally we compare the behavior of versus 2D doping with the dome-like behavior of the 3D bulk superconductivity observed in doped SrTiO. This comparison reveals surprising differences when the behavior is analyzed in terms of the 3D carrier density for the interface and the bulk.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd