Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4954054
1.
F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson, Rev. Mod. Phys. 85, 961 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.961
2.
L. R. Schreiber and H. Bluhm, Nat. Nanotechnol. 9, 966 (2014).
http://dx.doi.org/10.1038/nnano.2014.249
3.
B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W. Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez, R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F. Gyure, and A. T. Hunter, Nature 481, 344 (2012).
http://dx.doi.org/10.1038/nature10707
4.
E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen, Nat. Nanotechnol. 9, 666 (2014).
http://dx.doi.org/10.1038/nnano.2014.153
5.
D. Kim, Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, T. S. Koh, J. K. Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M. A. Eriksson, Nature 511, 70 (2014).
http://dx.doi.org/10.1038/nature13407
6.
K. Eng, T. D. Ladd, A. Smith, M. G. Borselli, A. A. Kiselev, B. H. Fong, K. S. Holabird, T. M. Hazard, B. Huang, P. W. Deelman, I. Milosavljevic, A. E. Schmitz, R. S. Ross, M. F. Gyure, and A. T. Hunter, Sci. Adv. 1, e1400254 (2015).
http://dx.doi.org/10.1126/sciadv.1500214
7.
J. J. Morton, D. R. McCamey, M. A. Eriksson, and S. A. Lyon, Nature 479, 345 (2011).
http://dx.doi.org/10.1038/nature10681
8.
M. Friesen, M. A. Eriksson, and S. N. Coppersmith, Appl. Phys. Lett. 89, 202106 (2006).
http://dx.doi.org/10.1063/1.2387975
9.
D. Kamburov, H. Shapourian, M. Shayegan, L. N. Pfeiffer, K. W. West, K. W. Baldwin, and R. Winkler, Phys. Rev. B 85, 121305 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.121305
10.
R. L. Willett, J. W. P. Hsu, D. Natelson, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 87, 126803 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.126803
11.
B. Novakovic, R. Akis, and I. Knezevic, Phys. Rev. B 84, 195419 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195419
12.
K. Haruta and W. J. Spencer, J. Appl. Phys. 37, 2232 (1966).
http://dx.doi.org/10.1063/1.1708792
13.
G. Guisbiers, O. V. Overschelde, M. Wautelet, P. Leclère, and R. Lazzaroni, J. Phys. D: Appl. Phys. 40, 1077 (2007).
http://dx.doi.org/10.1088/0022-3727/40/4/024
14.
M. V. Fischetti, Z. Ren, P. M. Solomon, M. Yang, and K. Rim, J. Appl. Phys. 94, 1079 (2003).
http://dx.doi.org/10.1063/1.1585120
15.
P. G. Evans, D. E. Savage, J. R. Prance, C. B. Simmons, M. G. Lagally, S. N. Coppersmith, M. A. Eriksson, and T. U. Schulli, Adv. Mater. 24, 5217 (2012).
http://dx.doi.org/10.1002/adma.201201833
16.
M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).
http://dx.doi.org/10.1063/1.114112
17.
P. M. Mooney, J. L. Jordan-Sweet, and S. H. Christiansen, Appl. Phys. Lett. 79, 2363 (2001).
http://dx.doi.org/10.1063/1.1408601
18.
D. M. Paskiewicz, D. E. Savage, M. V. Holt, P. G. Evans, and M. G. Lagally, Sci. Rep. 4, 4218 (2014).
http://dx.doi.org/10.1038/srep04218
19.
I. C. Noyan, P. C. Wang, S. K. Kaldor, and J. L. Jordan-Sweet, Appl. Phys. Lett. 74, 2352 (1999).
http://dx.doi.org/10.1063/1.123848
20.
C. E. Murray, I. C. Noyan, P. M. Mooney, B. Lai, and Z. Cai, Appl. Phys. Lett. 83, 4163 (2003).
http://dx.doi.org/10.1063/1.1628399
21.
P. G. Evans, P. P. Rugheimer, M. G. Lagally, C. H. Lee, A. Lal, Y. Xiao, B. Lai, and Z. Cai, J. Appl. Phys. 97(10), 103501 (2005).
http://dx.doi.org/10.1063/1.1894579
22.
C. E. Murray, A. Ying, S. M. Polvino, I. C. Noyan, M. Holt, and J. Maser, J. Appl. Phys. 109, 083543 (2011).
http://dx.doi.org/10.1063/1.3579421
23.
M. V. Holt, S. O. Hruszkewycz, C. E. Murray, J. R. Holt, D. M. Paskiewicz, and P. H. Fuoss, Phys. Rev. Lett. 112, 165502 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.165502
24.
S. O. Hruszkewycz, M. V. Holt, C. E. Murray, J. Bruley, J. Holt, A. Tripathi, O. G. Shpyrko, I. McNulty, M. J. Highland, and P. H. Fuoss, Nano Lett. 12, 5148 (2012).
http://dx.doi.org/10.1021/nl303201w
25.
N. Hrauda, J. Zhang, E. Wintersberger, T. Etzelstorfer, B. Mandl, J. Stangl, D. Carbone, V. Holy, V. Jovanovic, C. Biasotto, L. K. Nanver, J. Moers, D. Grutzmacher, and G. Bauer, Nano Lett. 11, 2875 (2011).
http://dx.doi.org/10.1021/nl2013289
26.
L. K. Nanver, V. Jovanović, C. Biasotto, J. Moers, D. Grützmacher, J. J. Zhang, N. Hrauda, M. Stoffel, F. Pezzoli, O. G. Schmidt, L. Miglio, H. Kosina, A. Marzegalli, G. Vastola, G. Mussler, J. Stangl, G. Bauer, J. van der Cingel, and E. Bonera, Solid State Electron. 60, 75 (2011).
http://dx.doi.org/10.1016/j.sse.2011.01.038
27.
M. Hytch, F. Houdellier, F. Hue, and E. Snoeck, Nature 453, 1086 (2008).
http://dx.doi.org/10.1038/nature07049
28.
K. Sawano, S. Koh, Y. Shiraki, N. Usami, and K. Nakagawa, Appl. Phys. Lett. 83, 4339 (2003).
http://dx.doi.org/10.1063/1.1629142
29.
A. Ying, B. Osting, I. C. Noyan, C. E. Murray, M. Holt, and J. Maser, J. Appl. Cryst. 43, 587 (2010).
http://dx.doi.org/10.1107/S0021889810008459
30.
See supplementary material at http://dx.doi.org/10.1063/1.4954054 for description of imaging artifacts, and detailed analysis of the angular tilt and Fourier transform of diffraction patterns.[Supplementary Material]
31.
G. A. Chahine, M.-I. Richard, R. A. Homs-Regojo, T. N. Tran-Caliste, D. Carbone, V. L. R. Jacques, R. Grifone, P. Boesecke, J. Katzer, I. Costina, H. Djazouli, T. Schroeder, and T. U. Schülli, J. Appl. Cryst. 47, 762 (2014).
http://dx.doi.org/10.1107/S1600576714004506
32.
I. A. Blech, J. Appl. Phys. 38, 2913 (1967).
http://dx.doi.org/10.1063/1.1710023
33.
J. A. Floro, S. J. Hearne, J. A. Hunter, P. Kotula, E. Chason, S. C. Seel, and C. V. Thompson, J. Appl. Phys. 89, 4886 (2001).
http://dx.doi.org/10.1063/1.1352563
34.
E. Chason, B. W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, Phys. Rev. Lett. 88, 156103 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.156103
35.
T. Thorbeck and N. M. Zimmerman, AIP Adv. 5, 087107 (2015).
http://dx.doi.org/10.1063/1.4928320
36.
F. Schaffler, Semicond. Sci. Technol. 12, 1515 (1997).
http://dx.doi.org/10.1088/0268-1242/12/12/001
37.
H. Huebl, A. R. Stegner, M. Stutzmann, M. S. Brandt, G. Vogg, F. Bensch, E. Rauls, and U. Gerstmann, Phys. Rev. Lett. 97, 166402 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.166402
38.
J. J. Pla, K. Y. Tan, J. P. Dehollain, W. H. Lim, J. J. Morton, D. N. Jamieson, A. S. Dzurak, and A. Morello, Nature 489, 541 (2012).
http://dx.doi.org/10.1038/nature11449
39.
J. T. Muhonen, J. P. Dehollain, A. Laucht, F. E. Hudson, R. Kalra, T. Sekiguchi, K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello, Nat. Nanotechnol. 9, 986 (2014).
http://dx.doi.org/10.1038/nnano.2014.211
40.
T. A. Baart, M. Shafiei, T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Nat. Nanotechnol. 11, 330 (2016).
http://dx.doi.org/10.1038/nnano.2015.291
41.
J. H. Davies and I. A. Larkin, Phys. Rev. B 49, 4800 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.4800
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4954054
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4954054
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4954054
2016-06-20
2016-09-26

Abstract

Disorder in the potential-energy landscape presents a major obstacle to the more rapid development of semiconductor quantum device technologies. We report a large-magnitude source of disorder, beyond commonly considered unintentional background doping or fixed charge in oxide layers: nanoscale strain fields induced by residual stresses in nanopatterned metal gates. Quantitative analysis of synchrotron coherent hard x-ray nanobeam diffraction patterns reveals gate-induced curvature and strains up to 0.03% in a buried Si quantum well within a Si/SiGe heterostructure. Electrode stress presents both challenges to the design of devices and opportunities associated with the lateral manipulation of electronic energy levels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4954054.html;jsessionid=P5ei6PIZ59DYrZhZ0jSA8WoS.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4954054&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4954054&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4954054'
Top,Right1,Right2,Right3,