Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/6/10.1063/1.4954056
1.
A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (CRC Press, 1 September 2003).
2.
T. Correia and Q. Zhang, Electrocaloric Materials: New Generation of Cooler (Springer Verlag, Berlin Heidelberg, London, UK, 2014).
3.
A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer International Publishing, Switzerland, 2015).
4.
S. Fähler, U. K. Rößer, O. Kastner, J. Eckert, G. Eggeler, H. Emmerich, P. Entel, S. Müller, E. Quandt, and K. Albe, Adv. Eng. Mater. 4, 10 (2012).
http://dx.doi.org/10.1002/adem.201100178
5.
X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
http://dx.doi.org/10.1038/nmat3951
6.
X. Y. Li, H. M. Gu, X. S. Qian, and Q. M. Zhang, in 2012 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (IEEE, 30 May 2012–1 June 2012) pp. 934937.
7.
V. K. Pecharsky and K. A. Gschneidner, Jr., Phys. Rev. Lett. 78, 44944497 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
8.
J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, Nat. Mater. 11, 620 (2012).
http://dx.doi.org/10.1038/nmat3334
9.
V. Provenzano, A. J. Shapiro, and R. D. Shull, Nature (London) 429, 853 (2004).
http://dx.doi.org/10.1038/nature02657
10.
S. Kar-Narayana and N. D. Mathur, Appl. Phys. Lett. 95, 242903 (2009).
http://dx.doi.org/10.1063/1.3275013
11.
S. Crossley, J. R. McGinnigle, S. Kar-Narayan, and N. D. Mathur, Appl. Phys. Lett. 104, 082909 (2014).
http://dx.doi.org/10.1063/1.4866256
12.
Y. Liu, X. Peng, X. Lou, and H. Zhou, Appl. Phys. Lett. 100, 192902 (2012).
http://dx.doi.org/10.1063/1.4711213
13.
Y. Liu, X. J. Lou, M. Bibes, and B. Dkhil, Phys. Rev. B 88, 024106 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.024106
14.
Y. Liu, I. C. Infante, X. J. Lou, and B. Dkhil, Appl. Phys. Lett. 104, 082901 (2014).
http://dx.doi.org/10.1063/1.4866272
15.
Z. K. Liu, X. Li, and Q. M. Zhang, Appl. Phys. Lett. 101, 082904 (2012).
http://dx.doi.org/10.1063/1.4747275
16.
X.-S. Qian, H.-J. Ye, Y.-T. Zhang, H. Gu, X. Li, C. A. Randall, and Q. M. Zhang, Adv. Funct. Mater. 24, 13001305 (2014).
http://dx.doi.org/10.1002/adfm.201302386
17.
Z. D. Luo, D.-W. Zhang, Y. Liu, D. Zhou, Y. G. Yao, C. Q. Liu, B. Dkhil, X. B. Ren, and X. J. Lou, Appl. Phys. Lett. 105, 102904 (2014).
http://dx.doi.org/10.1063/1.4895615
18.
Y. Liu, I. C. Infante, X. J. Lou, L. Bellaiche, J. F. Scott, and B. Dkhil, Adv. Mater. 26, 6132 (2014).
http://dx.doi.org/10.1002/adma.201401935
19.
W. P. Geng, Y. Liu, X. J. Meng, L. Bellaiche, J. F. Scott, B. Dkhil, and A. Q. Jiang, Adv. Mater. 27, 3165 (2015).
http://dx.doi.org/10.1002/adma.201501100
20.
Y. Liu, J. Wei, P.-E. Janolin, I. C. Infante, J. Kreisel, X. J. Lou, and B. Dkhil, Phys. Rev. B 90, 104107 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.104107
21.
Y. Liu, I. C. Infante, X. J. Lou, D. C. Lupascu, and B. Dkhil, Appl. Phys. Lett. 104, 012907 (2014).
http://dx.doi.org/10.1063/1.4861456
22.
Y. Liu, J. Wei, P.-E. Janolin, I. C. Infante, X. J. Lou, and B. Dkhil, Appl. Phys. Lett. 104, 162904 (2014).
http://dx.doi.org/10.1063/1.4873162
23.
J. F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100341
24.
S. G. Lu and Q. Zhang, Adv. Mater. 21, 1983 (2009).
http://dx.doi.org/10.1002/adma.200802902
25.
M. Valant, Prog. Mater. Sci. 57, 980 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2012.02.001
26.
S. Pamir Alpay, J. Mantese, S. Trolier-McKinstry, Q. M. Zhang, and R. W. Whatmore, MRS Bull. 39, 1099 (2014).
http://dx.doi.org/10.1557/mrs.2014.256
27.
I. Takeuchi and K. Sandeman, Phys. Today 68(12), 48 (2015).
http://dx.doi.org/10.1063/PT.3.3022
28.
S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 5, 067153 (2015).
http://dx.doi.org/10.1063/1.4922871
29.
W. N. Lawless and C. F. Clark, Phys. Rev. B 36, 459 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.459
30.
L. Shebanovs, K. Borman, W. N. Lawless, and A. Kalvane, Ferroelectrics 273, 137 (2002).
http://dx.doi.org/10.1080/00150190211761
31.
Y. Bai, G. P. Zheng, and S. Q. Shi, Appl. Phys. Lett. 96, 192902 (2009).
http://dx.doi.org/10.1063/1.3430045
32.
S. Kar-Narayana and N. D. Mathur, J. Phys. D: Appl. Phys. 43, 032002 (2010).
http://dx.doi.org/10.1088/0022-3727/43/3/032002
33.
Y. B. Jia and Y. Sungtaek Ju, Appl. Phys. Lett. 103, 042903 (2013).
http://dx.doi.org/10.1063/1.4816333
34.
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
http://dx.doi.org/10.1126/science.1123811
35.
M. C. Rose and R. E. Cohen, Phys. Rev. Lett. 109, 187604 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.187604
36.
N. Novak, Z. Kutnjak, and R. Pirc, Europhys. Lett. 103, 47001 (2013).
http://dx.doi.org/10.1209/0295-5075/103/47001
37.
N. Novak, R. Pirc, and Z. Kutnjak, Phys. Rev. B 87, 104102 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.104102
38.
V. Garcia and M. Bibes, Nat. Commun. 5, 4289 (2014).
http://dx.doi.org/10.1038/ncomms5289
39.
B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
http://dx.doi.org/10.1126/science.1159655
40.
P. Liu, J. L. Wang, X. J. Meng, J. Yang, B. Dkhil, and J. H. Chu, New J. Phys. 12, 023035 (2010).
http://dx.doi.org/10.1088/1367-2630/12/2/023035
41.
J. Muhonen, M. Meschke, and J. Pekola, Rep. Prog. Phys. 75, 046501 (2012).
http://dx.doi.org/10.1088/0034-4885/75/4/046501
42.
R. Pirc, Z. Kutnjak, R. Blinc, and Q. M. Zhang, Appl. Phys. Lett. 98, 021909 (2011).
http://dx.doi.org/10.1063/1.3543628
43.
W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.257602
44.
Y. Yao, C. Zhou, D. Lv, D. Wang, H. Wu, Y. Yang, and X. Ren, Europhys. Lett. 98, 27008 (2012).
http://dx.doi.org/10.1209/0295-5075/98/27008
45.
H.-J. Ye, X.-S. Qian, D.-Y. Jeong, S. J. Zhang, Y. Zhou, W.-Z. Shao, L. Zhen, and Q. M. Zhang, Appl. Phys. Lett. 105, 152908 (2014).
http://dx.doi.org/10.1063/1.4898599
46.
M. Sanlialp, V. V. Shvartsman, M. Acosta, B. Dkhil, and D. C. Lupascu, Appl. Phys. Lett. 106, 062901 (2015).
http://dx.doi.org/10.1063/1.4907774
47.
X. Wang, F. Tian, C. Zhao, J. Wu, Y. Liu, B. Dkhil, M. Zhang, Z. Gao, and X. J. Lou, Appl. Phys. Lett. 107, 252905 (2015).
http://dx.doi.org/10.1063/1.4938134
48.
J. Peräntie, J. Hagberg, A. Uusimäki, and H. Jantunen, Phys. Rev. B 82, 134119 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134119
49.
F. L. Goupil, A. Berenov, A.-K. Axelsson, and M. Valant, J. Appl. Phys. 111, 124109 (2012).
http://dx.doi.org/10.1063/1.4730338
50.
Y. Bai, G.-P. Zheng, and S.-Q. Shi, Mater. Res. Bull. 46, 1866 (2011).
http://dx.doi.org/10.1016/j.materresbull.2011.07.038
51.
X. J. Jiang, L. H. Luo, B. Y. Wang, W. P. Li, and H. B. Chen, Ceram. Int. 40, 2627 (2014).
http://dx.doi.org/10.1016/j.ceramint.2013.10.066
52.
R. Pirc, B. Rožič, J. Koruza, B. Malič, and Z. Kutnjak, Europhys. Lett. 107, 17002 (2014).
http://dx.doi.org/10.1209/0295-5075/107/17002
53.
B. Rožič, M. Kosec, H. Uršič, J. Holc, B. Malič, Q. M. Zhang, R. Blinc, R. Pirc, and Z. Kutnjak, J. Appl. Phys. 110, 064118 (2011).
http://dx.doi.org/10.1063/1.3641975
54.
J. S. Young, “Indirect measurement of the electrocaloric effect,” Ph.D. thesis, University of Cambridge, 2011.
55.
A. Al-Barakaty, S. Prosandeev, D. Wang, B. Dkhil, and L. Bellaiche, Phys. Rev. B 91, 214117 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.214117
56.
S. Lisenkov, B. K. Mani, E. Glazkova, C. W. Miller, and I. Ponomareva, Sci. Rep. 6, 19590 (2016).
http://dx.doi.org/10.1038/srep19590
57.
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
58.
M. M. Vopson, Solid State Commun. 152, 20672070 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.08.016
59.
S. Lisenkov, B. K. Mani, C.-M. Chang, J. Almand, and I. Ponomareva, Phys. Rev. B 87, 224101 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.224101
60.
S. Lisenkov and I. Ponomareva, Phys. Rev. B 86, 104103 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.104103
61.
Y. Liu, J. Wei, X. J. Lou, L. Bellaiche, J. F. Scott, and B. Dkhil, Appl. Phys. Lett. 106, 032901 (2015).
http://dx.doi.org/10.1063/1.4906198
62.
E. Bonnot, R. Romero, L. Mañosa, E. Vives, and A. Planes, Phys. Rev. Lett. 100, 125901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.125901
63.
J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, and I. Takeuchi, Appl. Phys. Lett. 101, 073904 (2012).
http://dx.doi.org/10.1063/1.4746257
64.
G. A. Samara, Ferroelectrics 2, 277 (1971).
http://dx.doi.org/10.1080/00150197108234102
65.
E. Mikhaleva, I. Flerov, M. Gorev, M. Molokeev, A. Cherepakhin, A. Kartashev, N. Mikhashenok, and K. Sablina, Phys. Solid State 54, 1832 (2012).
http://dx.doi.org/10.1134/S1063783412090181
66.
A. Chauhan, S. Patel, and R. Vaish, Appl. Phys. Lett. 106, 172901 (2015).
http://dx.doi.org/10.1063/1.4919453
67.
A. Chauhan, S. Patel, and R. Vaish, Acta Mater. 89, 384 (2015).
http://dx.doi.org/10.1016/j.actamat.2015.01.070
68.
P. Lloveras, E. Stern-Taulats, M. Barrio, J.-Ll. Tamarit, S. Crossley, W. Li, V. Pomjakushin, A. Planes, Ll. Mañosa, N. D. Mathur, and X. Moya, Nat. Commun. 6, 8801 (2015).
http://dx.doi.org/10.1038/ncomms9801
69.
J.-C. Toledano, Ann. Telecommun. 29, 249 (1974).
70.
L. J. Dunne, M. Valant, A.-K. Axelsson, G. Manos, and N. McN Alford, J. Phys. D: Appl. Phys. 44, 375404 (2011).
http://dx.doi.org/10.1088/0022-3727/44/37/375404
71.
E. Defay, S. Crossley, S. Kar-Narayan, X. Moya, and N. D. Mathur, Adv. Mater. 25, 3337 (2013).
http://dx.doi.org/10.1002/adma.201300606
72.
Q. Li, G. Z. Zhang, X. S. Zhang, S. L. Jiang, Y. K. Ye, and Q. Wang, Adv. Mater. 27, 2236 (2015).
http://dx.doi.org/10.1002/adma.201405495
73.
G. Z. Zhang, Q. Li, H. M. Gu, S. L. Jiang, K. Han, M. R. Gadinski, M. A. Haque, Q. M. Zhang, and Q. Wang, Adv. Mater. 27, 1450 (2015).
http://dx.doi.org/10.1002/adma.201404591
74.
G. Z. Zhang, X. S. Zhang, T. N. Yang, Q. Li, L.-Q. Chen, S. L. Jiang, and Q. Wang, ACS Nano 9, 7164 (2015).
http://dx.doi.org/10.1021/acsnano.5b03371
75.
H. Granicher, Helv. Phys. Acta 29, 210 (1956).
76.
E. Hegenbarth, Cryogenics 1, 242 (1961).
http://dx.doi.org/10.1016/S0011-2275(61)80015-5
77.
E. K. H. Salje, Annu. Rev. Mater. Res. 42, 265 (2012).
http://dx.doi.org/10.1146/annurev-matsci-070511-155022
78.
D. L. Fox, J. F. Scott, and P. M. Bridenbaugh, Solid State Commun. 18, 111 (1976).
http://dx.doi.org/10.1016/0038-1098(76)91412-5
79.
T. Castán, A. Planes, and A. Saxena, Phys. Rev. B 85, 144429 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.144429
80.
V. Katkanant, P. J. Edwardson, J. R. Hardy, and L. L. Boyer, Phys. Rev. Lett. 57, 2033 (1986);
http://dx.doi.org/10.1103/PhysRevLett.57.203357
V. Katkanant, P. J. Edwardson, J. R. Hardy, and L. L. Boyer, Phys. Rev. Lett. 57, 2877 (1986).
http://dx.doi.org/10.1103/PhysRevLett.57.2877.4
81.
J. F. Scott, J. Phys.: Condens. Matter 25, 331001 (2013).
http://dx.doi.org/10.1088/0953-8984/25/33/331001
82.
S. E. Rowley, M. Hadjimichael, M. N. Ali, Y. C. Durmaz, J. C. Lashley, R. J. Cava, and J. F. Scott, J. Phys.: Condens. Matter 27, 395901 (2015).
http://dx.doi.org/10.1088/0953-8984/27/39/395901
83.
S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, R. Pirc, M. Lin, X. Li, and L. Gorny, Appl. Phys. Lett. 97, 202901 (2010).
http://dx.doi.org/10.1063/1.3514255
84.
Y. Liu, L. C. Phillips, R. Mattana, M. Bibes, A. Barthélémy, and B. Dkhil, Nat. Commun. 7, 11614 (2016).
http://dx.doi.org/10.1038/ncomms11614
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/6/10.1063/1.4954056
Loading
/content/aip/journal/aplmater/4/6/10.1063/1.4954056
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/6/10.1063/1.4954056
2016-06-17
2016-09-26

Abstract

Many important breakthroughs and significant engineering developments have been achieved during the past two decades in the field of caloric materials. In this review, we address ferroelectrics emerging as ideal materials which permit both giant elastocaloric and/or electrocaloric responses near room temperature. We summarize recent strategies for improving caloric responses using geometrical optimization, maximizing the number of coexisting phases, combining positive and negative caloric responses, introducing extra degree of freedom like mechanical stress/pressure, and multicaloric effect driven by either single stimulus or multiple stimuli. This review highlights the promising perspective of ferroelectrics for developing next-generation solid-state refrigeration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/6/1.4954056.html;jsessionid=QIUBDEcwvDmelNQKirRK5jra.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/6/10.1063/1.4954056&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/6/10.1063/1.4954056&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/6/10.1063/1.4954056'
Top,Right1,Right2,Right3,