Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).
H. Zhang, J. Wang, G. Xu, and S. C. Zhang, Phys. Rev. Lett. 112, 096804 (2014).
T. Cai, X. Li, F. Wang, S. Ju, F. Feng, and C. D. Gong, Nano Lett. 15, 6434 (2015).
V. Pardo and W. Pickett, Phys. Rev. Lett. 102, 166803 (2009).
K. F. Garrity and D. Vanderbilt, Phys. Rev. B 90, 121103 (2014).
C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. Lett. 112, 046801 (2014).
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science 318, 766 (2007).
G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, Appl. Phys. Lett. 95, 053114 (2009).
Y. Zhang, K. He, C. Z. Chang, C. L. Song, L. L. Wang, X. Chen, J. F. Jia, Z. Fang, X. Dai, W. Y. Shan, S. Q. Shen, Q. Niu, X. L. Qi, S. C. Zhang, X. C. Ma, and Q. K. Xue, Nat. Phys. 6, 584 (2010).
Y. Onose, R. Yoshimi, A. Tsukazaki, H. Yuan, T. Hidaka, Y. Iwasa, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 4, 083001 (2011).
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013).
A. A. Taskin, F. Yang, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 89, 121302(R) (2014).
Y. Zhang, Z. Liu, B. Zhou, Y. Kim, Z. Hussain, Z. X. Shen, Y. Chen, and S. K. Mo, Appl. Phys. Lett. 105, 031901 (2014).
J. H. Chu, S. C. Riggs, M. Shapiro, J. Liu, C. R. Serero, D. Yi, M. Melissa, S. J. Suresha, C. Frontera, A. Vishwanath, X. Marti, I. R. Fisher, and R. Ramesh, e-print arXiv:1309.4750v2.
T. C. Fujita, Y. Kozuka, M. Uchida, A. Tsukazaki, T. Arima, and M. Kawasaki, Sci. Rep. 5, 9711 (2015).
D. Hirai, J. Matsuno, and H. Takagi, APL Mater. 3, 041508 (2015).
T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).
T. Kariyado and M. Ogata, J. Phys. Soc. Jpn. 81, 064701 (2012).
T. H. Hsieh, J. Liu, and L. Fu, Phys. Rev. B 90, 081112(R) (2014).
C.-K. Chiu, Y.-H. Chan, X. Li, Y. Nohara, and A. P. Schnyder, e-print arXiv:1606.03456v2.
A. Widera and H. Schäfer, Mater. Res. Bull. 15, 1805 (1980).
J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi, and H. Takagi, Acta Cryst. B 71, 300 (2015).
A. W. Rost et al., “Dirac Electrons in Inverse-Perovskites” (unpublished).
Y. F. Lee, F. Wu, R. Kumar, F. Hunte, J. Schwartz, and J. Narayan, Appl. Phys. Lett. 103, 112101 (2013).
P. J. Fisher, Ph.D. thesis, Carnegie Mellon University, 2008.
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität Wien, Vienna, 2001), ISBN: 3-9501031-1-2.
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
T. Kariyado, Ph.D. thesis, University of Tokyo, 2012.
J. Bashir, R. T. H. Khan, N. M. Butt, and G. Heger, Powder Diffr. 17, 222 (2002).
O. Maksimova, V. D. Heydemann, P. Fisher, M. Skowronski, and P. A. Salvador, Appl. Phys. Lett. 89, 262903 (2006).
J. A. McLeod, R. G. Wilks, N. A. Skorikov, L. D. Finkelstein, M. Abu-Samak, E. Z. Kurmaev, and A. Moewes, Phys. Rev. B 81, 245123 (2010).

Data & Media loading...


Article metrics loading...



A series of anti-perovskites including SrPbO are recently predicted to be a three-dimensional Dirac material with a small mass gap, which may be a topological crystalline insulator. Here, we report the epitaxial growth of SrPbO thin films on LaAlO using molecular beam epitaxy. X-ray diffraction indicates (001) growth of SrPbO, where [110] of SrPbO matches [100] of LaAlO. Measurements of the SrPbO films with parylene/Al capping layers reveal a metallic conduction with -type carrier density of ∼1020 cm−3. The successful growth of high quality SrPbO film is an important step for the exploration of its unique topological properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd