Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/7/10.1063/1.4955214
1.
V. Franco, J. S. Blázquez, B. Ingale, and A. Conde, Annu. Rev. Mater. Res. 42, 305342 (2012).
http://dx.doi.org/10.1146/annurev-matsci-062910-100356
2.
L. Mañosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 49254936 (2013).
http://dx.doi.org/10.1039/c3ta01289a
3.
X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439450 (2014).
http://dx.doi.org/10.1038/nmat3951
4.
V. K. Pecharsky and K. A. Gschneidner, Jr., Appl. Phys. Lett. 70, 32993301 (1997).
http://dx.doi.org/10.1063/1.119206
5.
B. F. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, Int. J. Refrig. 33, 10291060 (2010).
http://dx.doi.org/10.1016/j.ijrefrig.2010.04.002
6.
N. H. Dung, Z. Q. Ou, L. Caron, L. Zhang, D. T. C. Thanh, G. A. de Wijs, R. A. de Groot, K. H. J. Buschow, and E. Brück, Adv. Energy Mater. 1, 12151219 (2011).
http://dx.doi.org/10.1002/aenm.201100252
7.
V. Srivastava, Y. T. Song, K. Bhatti, and R. D. James, Adv. Energy Mater. 1, 97104 (2011).
http://dx.doi.org/10.1002/aenm.201000048
8.
V. Franco, J. S. Blázquez, C. F. Conde, and A. Conde, Appl. Phys. Lett. 88, 042505 (2006).
http://dx.doi.org/10.1063/1.2167803
9.
M. Jasinski, J. Liu, S. Jacobs, and C. Zimm, J. Appl. Phys. 107, 09A953 (2010).
http://dx.doi.org/10.1063/1.3335892
10.
K. Koyama, M. Sakai, T. Kanomata, and K. Watanabe, Jpn. J. Appl. Phys., Part 1 43, 80368039 (2004).
http://dx.doi.org/10.1143/JJAP.43.8036
11.
C. L. Zhang, D. H. Wang, Q. Q. Cao, Z. D. Han, H. C. Xuan, and Y. W. Du, Appl. Phys. Lett. 93, 122505 (2008).
http://dx.doi.org/10.1063/1.2990649
12.
E. K. Liu, W. Zhu, L. Feng, J. L. Chen, W. H. Wang, G. H. Wu, H. Y. Liu, F. B. Meng, H. Z. Luo, and Y. X. Li, EPL 91, 17003 (2010).
http://dx.doi.org/10.1209/0295-5075/91/17003
13.
N. T. Trung, L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück, Appl. Phys. Lett. 96, 172504 (2010).
http://dx.doi.org/10.1063/1.3399773
14.
E. K. Liu, W. H. Wang, L. Feng, W. Zhu, G. J. Li, J. L. Chen, H. W. Zhang, G. H. Wu, C. B. Jiang, H. B. Xu, and F. de Boer, Nat. Commun. 3, 873 (2012).
http://dx.doi.org/10.1038/ncomms1868
15.
N. T. Trung, V. Biharie, L. Zhang, L. Caron, K. H. J. Buschow, and E. Brück, Appl. Phys. Lett. 96, 162507 (2010).
http://dx.doi.org/10.1063/1.3399774
16.
L. Caron, N. T. Trung, and E. Brück, Phys. Rev. B 84, 020414(R) (2011).
http://dx.doi.org/10.1103/physrevb.84.020414
17.
S. C. Ma, D. H. Wang, H. C. Xuan, L. J. Shen, Q. Q. Cao, and Y. W. Du, Chin. Phys. B 20, 087502 (2011).
http://dx.doi.org/10.1088/1674-1056/20/8/087502
18.
T. Samanta, I. Dubenko, A. Quetz, S. Stadler, and N. Ali, Appl. Phys. Lett. 101, 242405 (2012).
http://dx.doi.org/10.1063/1.4770379
19.
A. P. Sivachenko, V. I. Mityuk, V. I. Kamenev, A. V. Golovchan, V. I. Val’kov, and I. F. Gribanov, Low Temp. Phys. 39, 10511054 (2013).
http://dx.doi.org/10.1063/1.4843196
20.
Y. Y. Zhao, F. X. Hu, L. F. Bao, J. Wang, H. Wu, Q. Z. Huang, R. R. Wu, Y. Liu, F. R. Shen, H. Kuang, M. Zhang, W. L. Zuo, X. Q. Zheng, J. R. Sun, and B. G. Shen, J. Am. Chem. Soc. 137, 17461749 (2015).
http://dx.doi.org/10.1021/ja510693a
21.
E. K. Liu, H. G. Zhang, G. Z. Xu, X. M. Zhang, R. S. Ma, W. H. Wang, J. L. Chen, H. W. Zhang, G. H. Wu, L. Feng, and X. X. Zhang, Appl. Phys. Lett. 102, 122405 (2013).
http://dx.doi.org/10.1063/1.4798318
22.
C. L. Zhang, D. H. Wang, Z. D. Han, B. Qian, H. F. Shi, C. Zhu, J. Chen, and T. Z. Wang, Appl. Phys. Lett. 103, 132411 (2013).
http://dx.doi.org/10.1063/1.4823510
23.
C. L. Zhang, H. F. Shi, Y. G. Nie, E. J. Ye, Z. D. Han, and D. H. Wang, Appl. Phys. Lett. 105, 242403 (2014).
http://dx.doi.org/10.1063/1.4904464
24.
L. F. Zhang, J. M. Wang, H. Hua, C. B. Jiang, and H. B. Xu, Appl. Phys. Lett. 105, 112402 (2014).
http://dx.doi.org/10.1063/1.4895929
25.
T. Samanta, D. L. Lepkowski, A. U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I. W. H. Oswald, G. T. McCandless, J. Y. Chan, P. W. Adams, D. P. Young, N. Ali, and S. Stadler, Phys. Rev. B 91, 020401(R) (2015).
http://dx.doi.org/10.1103/PhysRevB.91.020401
26.
T. Samanta, D. L. Lepkowski, A. U. Saleheen, A. Shankar, J. Prestigiacomo, I. Dubenko, A. Quetz, I. W. H. Oswald, G. T. McCandless, J. Y. Chan, P. W. Adams, D. P. Young, N. Ali, and S. Stadler, J. Appl. Phys. 117, 123911 (2015).
http://dx.doi.org/10.1063/1.4916339
27.
C. L. Zhang, H. F. Shi, E. J. Ye, Y. G. Nie, Z. D. Han, and D. H. Wang, J. Alloys Compd. 639, 3639 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.03.118
28.
Z. Y. Wei, E. K. Liu, Y. Li, G. Z. Xu, X. M. Zhang, G. D. Liu, X. K. Xi, H. W. Zhang, W. H. Wang, G. H. Wu, and X. X. Zhang, Adv. Electron. Mater. 1, 1500076 (2015).
http://dx.doi.org/10.1002/aelm.201500076
29.
V. Johnson and C. G. Frederick, Phys. Status Solidi A 20, 331335 (1973).
http://dx.doi.org/10.1002/pssa.2210200133
30.
V. Johnson, Inorg. Chem. 14, 11171120 (1975).
http://dx.doi.org/10.1021/ic50147a032
31.
W. Bażeła, A. Szytuła, J. Todorović, and A. Zięba, Phys. Status Solidi A 64, 367378 (1981).
http://dx.doi.org/10.1002/pssa.2210640140
32.
C. L. Zhang, H. F. Shi, E. J. Ye, Y. G. Nie, Z. D. Han, B. Qian, and D. H. Wang, Appl. Phys. Lett. 107, 212403 (2015).
http://dx.doi.org/10.1063/1.4936610
33.
K. Kanematsu, K. Yasukochi1, and T. Ohoyama, J. Phys. Soc. Jpn. 17, 932936 (1962).
http://dx.doi.org/10.1143/JPSJ.17.932
34.
See supplementary material at http://dx.doi.org/10.1063/1.4955214 for structural and thermal analysis of Mn0.8Co0.2NiGe1−xSixand complete phase diagram of Mn1−yCoyNiGe1−xSix.[Supplementary Material]
35.
A. Quetz, T. Samanta, I. Dubenko, M. J. Kangas, J. Y. Chan, S. Stadler, and N. Ali, J. Appl. Phys. 114, 153909 (2013).
http://dx.doi.org/10.1063/1.4826260
36.
M. Budzynski, V. I. Val’kov, A. V. Golovchan, V. I. Kamenev, V. I. Mitsiuk, A. P. Sivachenko, Z. Surowiec, and T. M. Tkachenka, J. Magn. Magn. Mater. 396, 166168 (2015).
http://dx.doi.org/10.1016/j.jmmm.2015.08.052
37.
A. Szytuła, A. T. Pȩdziwiatr, Z. Tomkowicz, and W. Bażeła, J. Magn. Magn. Mater. 25, 176186 (1981).
http://dx.doi.org/10.1016/0304-8853(81)90116-5
38.
D. Satuła, K. Szymański, K. Rećko, W. Olszewski, and B. Kalska-Szostko, Nukleonika 60, 127131 (2015).
http://dx.doi.org/10.1515/nuka-2015-0026
39.
Y. Li, Z. Y. Wei, E. K. Liu, G. D. Liu, S. G. Wang, W. H. Wang, and G. H. Wu, J. Appl. Phys. 117, 17C117 (2015).
http://dx.doi.org/10.1063/1.4916107
40.
L. Caron, Z. Q. Ou, T. T. Nguyen, D. T. C. Thanh, O. Tegus, and E. Brück, J. Magn. Magn. Mater. 321, 35593566 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.06.086
41.
K. A. Gschneidner, Jr., Y. Mudryk, and V. K. Pecharsky, Scr. Mater. 67, 572577 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2011.12.042
42.
L. Mañosa, D. González-Alonso1, A. Planes, E. Bonnot, M. Barrio, J. L. Tamarit, S. Aksoy, and M. Acet, Nat. Mater. 9, 478481 (2010).
http://dx.doi.org/10.1038/nmat2731
43.
P. O. Castillo-Villa, D. E. Soto-Parra, J. A. Matutes-Aquino, R. A. Ochoa-Gamboa, A. Planes, L. Mañosa, D. González-Alonso, M. Stipcich, R. Romero, D. Ríos-Jara, and H. Flores-Zúñiga, Phys. Rev. B 83, 174109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174109
44.
L. Mañosa, D. González-Alonso, A. Planes, M. Barri, J.-Ll Tamarit, I. S. Titov, M. Acet, A. Bhattacharyya, and S. Majumdar, Nat. Commun. 2, 595 (2011).
http://dx.doi.org/10.1038/ncomms1606
45.
P. Lloveras, E. Stern-Taulats, M. Barrio, J.-Ll Tamarit, S. Crossley, W. Li, V. Pomjakushin, A. Planes, L. Mañosa, N. D. Mathur, and X. Moya, Nat. Commun. 6, 8801 (2015).
http://dx.doi.org/10.1038/ncomms9801
46.
Y. Li, D. W. Zhao, and J. Liu, Sci. Rep. 6, 25500 (2016).
http://dx.doi.org/10.1038/srep25500
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/7/10.1063/1.4955214
Loading
/content/aip/journal/aplmater/4/7/10.1063/1.4955214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/7/10.1063/1.4955214
2016-07-18
2016-12-08

Abstract

An attempt was made to tailor the magnetostructural transitions over a wide temperature range under the principle of isostructural alloying. A series of wide Curie-temperature windows (CTWs) with a maximal width of 377 K between 69 and 446 K were established in the Mn CoNiGe Si system. Throughout the CTWs, the magnetic-field-induced metamagnetic behavior and giant magnetocaloric effects are obtained. The (Mn,Co)Ni(Ge,Si) system shows great potential as multifunctional phase-transition materials that work in a wide range covering liquid-nitrogen and above water-boiling temperatures. Moreover, general understanding of isostructural alloying and CTWs constructed in (Mn,Co)Ni(Ge,Si) as well as (Mn,Fe)Ni(Ge,Si) is provided.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/7/1.4955214.html;jsessionid=9RKUc5nksCRWqNSEzSvouke6.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/7/10.1063/1.4955214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/7/10.1063/1.4955214&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/7/10.1063/1.4955214'
Top,Right1,Right2,Right3,