Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 102, 1413 (1956).
J. Nogués and I. K. Schuller, “Exchange bias,” J. Magn. Magn. Mater. 192, 203232 (1999).
M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, “Exchange bias in LaNiO3–LaMnO3 superlattices,” Nat. Mater. 11, 195198 (2012).
M. Kiwi, “Exchange bias theory,” J. Magn. Magn. Mater. 234, 584595 (2001).
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, “Exchange bias in nanostructures,” Phys. Rep. 422, 65117 (2005).
M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey, and R. L. Stamps, “Exchange bias using a spin glass,” Nat. Mater. 6, 7075 (2007).
F. Te Yuan, J. K. Lin, Y. D. Yao, and S. F. Lee, “Exchange bias in spin glass (FeAu)/NiFe thin films,” Appl. Phys. Lett. 96, 1821 (2010).
K. D. Usadel and U. Nowak, “Exchange bias for a ferromagnetic film coupled to a spin glass,” Phys. Rev. B 80, 014418 (2009).
Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol. 8, 438444 (2013).
S. J. Zhu, J. Yuan, B. Y. Zhu, F. C. Zhang, B. Xu, L. X. Cao, X. G. Qiu, B. R. Zhao, and P. X. Zhang, “Exchange bias effect and enhanced magnetoresistance in La0.67Sr0.33MnO3/SrTiO3 superlattices,” Appl. Phys. Lett. 90, 112502 (2007).
F. Radu, R. Abrudan, I. Radu, D. Schmitz, and H. Zabel, “Perpendicular exchange bias in ferrimagnetic spin valves,” Nat. Commun. 3, 715 (2012).
S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9, 721724 (2010).
S. Maat, K. Takano, S. Parkin, and E. Fullerton, “Perpendicular exchange bias of Co/Pt multilayers,” Phys. Rev. Lett. 87, 87202 (2001).
W. Zhang, R. Ramesh, J. L. MacManus-Driscoll, and H. Wang, “Multifunctional, self-assembled oxide nanocomposite thin films and devices,” MRS Bull. 40, 736745 (2015).
J. L. MacManus-Driscoll, A. Suwardi, and H. Wang, “Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides,” MRS Bull. 40, 933942 (2015).
M. Fan, W. Zhang, F. Khatkhatay, L. Li, and H. Wang, “Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La0.7Sr0.3MnO3)1−x:(CeO2)x nanocomposites,” J. Appl. Phys. 118, 065302 (2015).
W. Zhang, A. Chen, F. Khatkhatay, C. Tsai, Q. Su, L. Jiao, X. Zhang, and H. Wang, “Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)1−x:(ZnO)x thin films on silicon substrates,” ACS Appl. Mater. Interfaces 5, 3995 (2013).
J. Huang, C.-F. Tsai, L. Chen, J. Jian, F. Khatkhatay, K. Yu, and H. Wang, “Magnetic properties of (CoFe2O4)x:(CeO2)1−x vertically aligned nanocomposites and their pinning properties in Y Ba2Cu3O7−δ thin films,” J. Appl. Phys. 115, 123902 (2014).
S. A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S. A. T. Redfern, S.-H. Baek, C. W. Bark, C.-B. Eom, Q. Jia, M. E. Vickers, and J. L. Macmanus-Driscoll, “Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain,” Nat. Nanotechnol. 6, 491495 (2011).
W. Zhang, A. Chen, J. Jian, Y. Zhu, L. Chen, P. Lu, Q. Jia, J. L. MacManus-Driscoll, X. Zhang, and H. Wang, “Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling,” Nanoscale 7, 13808 (2015).
W. Zhang, M. Fan, L. Li, A. Chen, Q. Su, Q. Jia, J. L. MacManus-Driscoll, and H. Wang, “Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films,” Appl. Phys. Lett. 107, 212901 (2015).
T. Fujii, I. Matsusue, and J. Takada, “Superparamagnetic behaviour and induced ferrimagnetism of LaFeO3 nanoparticles prepared by a hot-soap technique,” in Advanced Aspects of Spectroscopy (InTech, 2012).
W. Zhang, A. Chen, Z. Bi, Q. Jia, J. L. Macmanus-Driscoll, and H. Wang, “Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control,” Curr. Opin. Solid State Mater. Sci. 18, 618 (2014).
S. Lee, W. Zhang, F. Khatkhatay, Q. Jia, H. Wang, and J. L. Macmanus-Driscoll, “Strain tuning and strong enhancement of ionic conductivity in SrZrO3-RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films,” Adv. Funct. Mater. 25, 43284333 (2015).
F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, “Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins,” Nature 405, 767769 (2000).
B. Cui, C. Song, G. Y. Wang, H. J. Mao, F. Zeng, and F. Pan, “Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film,” Sci. Rep. 3, 2542 (2013).
T. Yu, X. K. Ning, W. Liu, J. N. Feng, X. G. Zhao, and Z. D. Zhang, “Exchange bias effect in epitaxial La0.67Ca0.33MnO3/SrMnO3 thin film structure,” J. Appl. Phys. 116, 083908 (2014).
J. F. Ding, O. I. Lebedev, S. Turner, Y. F. Tian, W. J. Hu, J. W. Seo, C. Panagopoulos, W. Prellier, G. Van Tendeloo, and T. Wu, “Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders,” Phys. Rev. B 87, 054428 (2013).
X. K. Ning, Z. J. Wang, X. G. Zhao, C. W. Shih, and Z. D. Zhang, “Exchange bias in La0.7Sr0.3MnO3/NiO and LaMnO3/NiO interfaces,” J. Appl. Phys. 113, 223903 (2013).
X. Ning, Z. J. Wang, X. Zhao, C. Shih, W. Chang, and Z. Zhang, “Exchange bias effect and magnetic properties in La0.7Sr0.3MnO3-NiO nanocomposite films,” IEEE Trans. Magn. 50, 14 (2014).
C. Adamo, X. Ke, H. Q. Wang, H. L. Xin, T. Heeg, M. E. Hawley, W. Zander, J. Schubert, P. Schiffer, D. A. Muller, L. Maritato, and D. G. Schlom, “Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films,” Appl. Phys. Lett. 95, 112504 (2009).
D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, “Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films,” Nat. Commun. 3, 1189 (2012).
M. Patra, K. De, S. Majumdar, and S. Giri, “Exchange bias with Fe substitution in LaMnO3,” Eur. Phys. J. B 58, 367371 (2007).
J. Alonso, M. L. Fdez-Gubieda, J. M. Barandiarán, A. Svalov, L. Fernández Barquín, D. Alba Venero, and I. Orue, “Crossover from superspin glass to superferromagnet in FexAg100−x nanostructured thin films (20 ≤ x ≤ 50),” Phys. Rev. B 82, 054406 (2010).
Y. Takamura, E. Folven, J. B. R. Shu, K. R. Lukes, B. Li, A. Scholl, A. T. Young, S. T. Retterer, T. Tybell, and J. K. Grepstad, “Spin-flop coupling and exchange bias in embedded complex oxide micromagnets,” Phys. Rev. Lett. 111, 107201 (2013).
P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, “Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures,” Phys. Rev. Lett. 105, 027201 (2010).
Q. K. Ong, A. Wei, and X. M. Lin, “Exchange bias in Fe/Fe3O4 core-shell magnetic nanoparticles mediated by frozen interfacial spins,” Phys. Rev. B 80, 134418 (2009).
W. B. Rui, Y. Hu, A. Du, B. You, M. W. Xiao, W. Zhang, S. M. Zhou, and J. Du, “Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers,” Sci. Rep. 5, 13640 (2015).
L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, and L. Signorini, “Field-cooling dependence of exchange bias in a granular system of Fe nanoparticles embedded in an Fe oxide matrix,” Phys. Rev. B 70, 052401 (2004).
Y. K. Tang, Y. Sun, and Z. H. Cheng, “Exchange bias associated with phase separation in the perovskite cobaltite La1−xSrxCoO3,” Phys. Rev. B 73(17), 174419 (2006).
O. Gomonay and I. Lukyanchuk, “Magnetostriction-induced anisotropy in the exchange biased bilayers,” Metallofiz. i Noveishie Technol. 36, 14531464 (2014); arXiv:1404.1591.
M. Ali, C. Marrows, and B. Hickey, “Onset of exchange bias in ultrathin antiferromagnetic layers,” Phys. Rev. B 67, 172405 (2003).
K. T. Y. Kung, L. K. Louie, and G. L. Gorman, “MnFe structure-exchange anisotropy relation in the NiFe/MnFe/NiFe system,” J. Appl. Phys. 69, 56345636 (1991).
See supplementary material at for detailed High-resolution TEM images and temperature dependent HEB behavior analysis.[Supplementary Material]

Data & Media loading...


Article metrics loading...



Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (LaSrMnO) : (LaFeO) (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ∼800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd