Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/7/10.1063/1.4958965
1.
W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy,” Phys. Rev. 102, 1413 (1956).
http://dx.doi.org/10.1103/PhysRev.102.1413
2.
J. Nogués and I. K. Schuller, “Exchange bias,” J. Magn. Magn. Mater. 192, 203232 (1999).
http://dx.doi.org/10.1016/S0304-8853(98)00266-2
3.
M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, and J.-M. Triscone, “Exchange bias in LaNiO3–LaMnO3 superlattices,” Nat. Mater. 11, 195198 (2012).
http://dx.doi.org/10.1038/nmat3224
4.
M. Kiwi, “Exchange bias theory,” J. Magn. Magn. Mater. 234, 584595 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00421-8
5.
J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, “Exchange bias in nanostructures,” Phys. Rep. 422, 65117 (2005).
http://dx.doi.org/10.1016/j.physrep.2005.08.004
6.
M. Ali, P. Adie, C. H. Marrows, D. Greig, B. J. Hickey, and R. L. Stamps, “Exchange bias using a spin glass,” Nat. Mater. 6, 7075 (2007).
http://dx.doi.org/10.1038/nmat1809
7.
F. Te Yuan, J. K. Lin, Y. D. Yao, and S. F. Lee, “Exchange bias in spin glass (FeAu)/NiFe thin films,” Appl. Phys. Lett. 96, 1821 (2010).
http://dx.doi.org/10.1063/1.3399780
8.
K. D. Usadel and U. Nowak, “Exchange bias for a ferromagnetic film coupled to a spin glass,” Phys. Rev. B 80, 014418 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.014418
9.
Y. Fan, K. J. Smith, G. Lüpke, A. T. Hanbicki, R. Goswami, C. H. Li, H. B. Zhao, and B. T. Jonker, “Exchange bias of the interface spin system at the Fe/MgO interface,” Nat. Nanotechnol. 8, 438444 (2013).
http://dx.doi.org/10.1038/nnano.2013.94
10.
S. J. Zhu, J. Yuan, B. Y. Zhu, F. C. Zhang, B. Xu, L. X. Cao, X. G. Qiu, B. R. Zhao, and P. X. Zhang, “Exchange bias effect and enhanced magnetoresistance in La0.67Sr0.33MnO3/SrTiO3 superlattices,” Appl. Phys. Lett. 90, 112502 (2007).
http://dx.doi.org/10.1063/1.2713175
11.
F. Radu, R. Abrudan, I. Radu, D. Schmitz, and H. Zabel, “Perpendicular exchange bias in ferrimagnetic spin valves,” Nat. Commun. 3, 715 (2012).
http://dx.doi.org/10.1038/ncomms1728
12.
S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction,” Nat. Mater. 9, 721724 (2010).
http://dx.doi.org/10.1038/nmat2804
13.
S. Maat, K. Takano, S. Parkin, and E. Fullerton, “Perpendicular exchange bias of Co/Pt multilayers,” Phys. Rev. Lett. 87, 87202 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.087202
14.
W. Zhang, R. Ramesh, J. L. MacManus-Driscoll, and H. Wang, “Multifunctional, self-assembled oxide nanocomposite thin films and devices,” MRS Bull. 40, 736745 (2015).
http://dx.doi.org/10.1557/mrs.2015.198
15.
J. L. MacManus-Driscoll, A. Suwardi, and H. Wang, “Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides,” MRS Bull. 40, 933942 (2015).
http://dx.doi.org/10.1557/mrs.2015.258
16.
M. Fan, W. Zhang, F. Khatkhatay, L. Li, and H. Wang, “Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La0.7Sr0.3MnO3)1−x:(CeO2)x nanocomposites,” J. Appl. Phys. 118, 065302 (2015).
http://dx.doi.org/10.1063/1.4928160
17.
W. Zhang, A. Chen, F. Khatkhatay, C. Tsai, Q. Su, L. Jiao, X. Zhang, and H. Wang, “Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)1−x:(ZnO)x thin films on silicon substrates,” ACS Appl. Mater. Interfaces 5, 3995 (2013).
http://dx.doi.org/10.1021/am400068h
18.
J. Huang, C.-F. Tsai, L. Chen, J. Jian, F. Khatkhatay, K. Yu, and H. Wang, “Magnetic properties of (CoFe2O4)x:(CeO2)1−x vertically aligned nanocomposites and their pinning properties in Y Ba2Cu3O7−δ thin films,” J. Appl. Phys. 115, 123902 (2014).
http://dx.doi.org/10.1063/1.4869217
19.
S. A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S. A. T. Redfern, S.-H. Baek, C. W. Bark, C.-B. Eom, Q. Jia, M. E. Vickers, and J. L. Macmanus-Driscoll, “Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain,” Nat. Nanotechnol. 6, 491495 (2011).
http://dx.doi.org/10.1038/nnano.2011.98
20.
W. Zhang, A. Chen, J. Jian, Y. Zhu, L. Chen, P. Lu, Q. Jia, J. L. MacManus-Driscoll, X. Zhang, and H. Wang, “Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling,” Nanoscale 7, 13808 (2015).
http://dx.doi.org/10.1039/C5NR03231H
21.
W. Zhang, M. Fan, L. Li, A. Chen, Q. Su, Q. Jia, J. L. MacManus-Driscoll, and H. Wang, “Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films,” Appl. Phys. Lett. 107, 212901 (2015).
http://dx.doi.org/10.1063/1.4936157
22.
T. Fujii, I. Matsusue, and J. Takada, “Superparamagnetic behaviour and induced ferrimagnetism of LaFeO3 nanoparticles prepared by a hot-soap technique,” in Advanced Aspects of Spectroscopy (InTech, 2012).
http://dx.doi.org/10.5772/50031
23.
W. Zhang, A. Chen, Z. Bi, Q. Jia, J. L. Macmanus-Driscoll, and H. Wang, “Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control,” Curr. Opin. Solid State Mater. Sci. 18, 618 (2014).
http://dx.doi.org/10.1016/j.cossms.2013.07.007
24.
S. Lee, W. Zhang, F. Khatkhatay, Q. Jia, H. Wang, and J. L. Macmanus-Driscoll, “Strain tuning and strong enhancement of ionic conductivity in SrZrO3-RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films,” Adv. Funct. Mater. 25, 43284333 (2015).
http://dx.doi.org/10.1002/adfm.201404420
25.
F. Nolting, A. Scholl, J. Stöhr, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-P. Locquet, S. Anders, J. Lüning, E. E. Fullerton, M. F. Toney, M. R. Scheinfein, and H. A. Padmore, “Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins,” Nature 405, 767769 (2000).
http://dx.doi.org/10.1038/35015515
26.
B. Cui, C. Song, G. Y. Wang, H. J. Mao, F. Zeng, and F. Pan, “Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film,” Sci. Rep. 3, 2542 (2013).
http://dx.doi.org/10.1038/srep02542
27.
T. Yu, X. K. Ning, W. Liu, J. N. Feng, X. G. Zhao, and Z. D. Zhang, “Exchange bias effect in epitaxial La0.67Ca0.33MnO3/SrMnO3 thin film structure,” J. Appl. Phys. 116, 083908 (2014).
http://dx.doi.org/10.1063/1.4894281
28.
J. F. Ding, O. I. Lebedev, S. Turner, Y. F. Tian, W. J. Hu, J. W. Seo, C. Panagopoulos, W. Prellier, G. Van Tendeloo, and T. Wu, “Interfacial spin glass state and exchange bias in manganite bilayers with competing magnetic orders,” Phys. Rev. B 87, 054428 (2013).
http://dx.doi.org/10.1103/physrevb.87.054428
29.
X. K. Ning, Z. J. Wang, X. G. Zhao, C. W. Shih, and Z. D. Zhang, “Exchange bias in La0.7Sr0.3MnO3/NiO and LaMnO3/NiO interfaces,” J. Appl. Phys. 113, 223903 (2013).
http://dx.doi.org/10.1063/1.4811227
30.
X. Ning, Z. J. Wang, X. Zhao, C. Shih, W. Chang, and Z. Zhang, “Exchange bias effect and magnetic properties in La0.7Sr0.3MnO3-NiO nanocomposite films,” IEEE Trans. Magn. 50, 14 (2014).
http://dx.doi.org/10.1109/TMAG.2013.2279569
31.
C. Adamo, X. Ke, H. Q. Wang, H. L. Xin, T. Heeg, M. E. Hawley, W. Zander, J. Schubert, P. Schiffer, D. A. Muller, L. Maritato, and D. G. Schlom, “Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films,” Appl. Phys. Lett. 95, 112504 (2009).
http://dx.doi.org/10.1063/1.3213346
32.
D. Pesquera, G. Herranz, A. Barla, E. Pellegrin, F. Bondino, E. Magnano, F. Sánchez, and J. Fontcuberta, “Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films,” Nat. Commun. 3, 1189 (2012).
http://dx.doi.org/10.1038/ncomms2189
33.
M. Patra, K. De, S. Majumdar, and S. Giri, “Exchange bias with Fe substitution in LaMnO3,” Eur. Phys. J. B 58, 367371 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00253-9
34.
J. Alonso, M. L. Fdez-Gubieda, J. M. Barandiarán, A. Svalov, L. Fernández Barquín, D. Alba Venero, and I. Orue, “Crossover from superspin glass to superferromagnet in FexAg100−x nanostructured thin films (20 ≤ x ≤ 50),” Phys. Rev. B 82, 054406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.054406
35.
Y. Takamura, E. Folven, J. B. R. Shu, K. R. Lukes, B. Li, A. Scholl, A. T. Young, S. T. Retterer, T. Tybell, and J. K. Grepstad, “Spin-flop coupling and exchange bias in embedded complex oxide micromagnets,” Phys. Rev. Lett. 111, 107201 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.107201
36.
P. Yu, J. S. Lee, S. Okamoto, M. D. Rossell, M. Huijben, C. H. Yang, Q. He, J. X. Zhang, S. Y. Yang, M. J. Lee, Q. M. Ramasse, R. Erni, Y. H. Chu, D. A. Arena, C. C. Kao, L. W. Martin, and R. Ramesh, “Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures,” Phys. Rev. Lett. 105, 027201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.027201
37.
Q. K. Ong, A. Wei, and X. M. Lin, “Exchange bias in Fe/Fe3O4 core-shell magnetic nanoparticles mediated by frozen interfacial spins,” Phys. Rev. B 80, 134418 (2009).
http://dx.doi.org/10.1103/physrevb.80.134418
38.
W. B. Rui, Y. Hu, A. Du, B. You, M. W. Xiao, W. Zhang, S. M. Zhou, and J. Du, “Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers,” Sci. Rep. 5, 13640 (2015).
http://dx.doi.org/10.1038/srep13640
39.
L. Del Bianco, D. Fiorani, A. M. Testa, E. Bonetti, and L. Signorini, “Field-cooling dependence of exchange bias in a granular system of Fe nanoparticles embedded in an Fe oxide matrix,” Phys. Rev. B 70, 052401 (2004).
http://dx.doi.org/10.1103/physrevb.70.052401
40.
Y. K. Tang, Y. Sun, and Z. H. Cheng, “Exchange bias associated with phase separation in the perovskite cobaltite La1−xSrxCoO3,” Phys. Rev. B 73(17), 174419 (2006).
http://dx.doi.org/10.1103/physrevb.73.174419
41.
O. Gomonay and I. Lukyanchuk, “Magnetostriction-induced anisotropy in the exchange biased bilayers,” Metallofiz. i Noveishie Technol. 36, 14531464 (2014); arXiv:1404.1591.
42.
M. Ali, C. Marrows, and B. Hickey, “Onset of exchange bias in ultrathin antiferromagnetic layers,” Phys. Rev. B 67, 172405 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.172405
43.
K. T. Y. Kung, L. K. Louie, and G. L. Gorman, “MnFe structure-exchange anisotropy relation in the NiFe/MnFe/NiFe system,” J. Appl. Phys. 69, 56345636 (1991).
http://dx.doi.org/10.1063/1.347920
44.
See supplementary material at http://dx.doi.org/10.1063/1.4958965 for detailed High-resolution TEM images and temperature dependent HEB behavior analysis.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/7/10.1063/1.4958965
Loading
/content/aip/journal/aplmater/4/7/10.1063/1.4958965
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/7/10.1063/1.4958965
2016-07-18
2016-12-09

Abstract

Strong exchange bias (EB) in perpendicular direction has been demonstrated in vertically aligned nanocomposite (VAN) (LaSrMnO) : (LaFeO) (LSMO:LFO, x = 0.33, 0.5, 0.67) thin films deposited by pulsed laser deposition. Under a moderate magnetic field cooling, an EB field as high as ∼800 Oe is achieved in the VAN film with x = 0.33, suggesting a great potential for its applications in high density memory devices. Such enhanced EB effects in perpendicular direction can be attributed to the high quality epitaxial co-growth of vertically aligned ferromagnetic LSMO and antiferromagnetic LFO phases, and the vertical interface coupling associated with a disordered spin-glass state. The VAN design paves a powerful way for integrating perpendicular EB effect within thin films and provides a new dimension for advanced spintronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/7/1.4958965.html;jsessionid=kZ1qH2aB_qTkJfAfZQvgYFk8.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/7/10.1063/1.4958965&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/7/10.1063/1.4958965&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/7/10.1063/1.4958965'
Top,Right1,Right2,Right3,