Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/8/10.1063/1.4960621
1.
S. K. Streiffer, J. A. Eastman, D. D. Fong, C. Thompson, A. Munkholm, M. V. Ramana Murty, O. Auciello, G. R. Bai, and G. B. Stephenson, Phys. Rev. Lett. 89, 067601 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.067601
2.
D. D. Fong, G. B. Stephenson, S. K. Streiffer, J. A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson, Science 304, 1650 (2004).
http://dx.doi.org/10.1126/science.1098252
3.
V. Nagarajan, J. Junquera, J. Q. He, C. L. Jia, R. Waser, K. Lee, Y. K. Kim, S. Baik, T. Zhao, R. Ramesh, P. Ghosez, and K. M. Rabe, J. Appl. Phys. 100, 051609 (2006).
http://dx.doi.org/10.1063/1.2337363
4.
R. Takahashi, O. Dahl, E. Eberg, J. K. Grepstad, and T. Tybell, J. Appl. Phys. 104, 064109 (2008).
http://dx.doi.org/10.1063/1.2978225
5.
H. Lu, X. Liu, J. D. Burton, C.-W. Bark, Y. Wang, Y. Zhang, D. J. Kim, A. Stamm, P. Lukashev, D. A. Felker, C. M. Folkman, P. Gao, M. S. Rzchowski, X. Q. Pan, C.-B. Eom, E. Y. Tsymbal, and A. Gruverman, Adv. Mater. 24, 1209 (2012).
http://dx.doi.org/10.1002/adma.201104398
6.
C. Lichtensteiger, S. Fernandez-Pena, C. Weymann, P. Zubko, and J.-M. Triscone, Nano Lett. 14, 4205 (2014).
http://dx.doi.org/10.1021/nl404734z
7.
D. D. Fong, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, P. H. Fuoss, G. B. Stephenson, C. Thompson, D. M. Kim, K. J. Choi, C. B. Eom, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett. 96, 127601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.127601
8.
A. M. Kolpak, I. Grinberg, and A. M. Rappe, Phys. Rev. Lett. 98, 166101 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.166101
9.
R. Takahashi, J. K. Grepstad, T. Tybell, and Y. Matsumoto, Appl. Phys. Lett. 92, 112901 (2008).
http://dx.doi.org/10.1063/1.2890485
10.
M. J. Highland, T. T. Fister, M.-I. Richard, D. D. Fong, P. H. Fuoss, C. Thompson, J. A. Eastman, S. K. Streiffer, and G. B. Stephenson, Phys. Rev. Lett. 105, 167601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.167601
11.
M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, and J.-M. Triscone, Adv. Mater. 19, 4153 (2007).
http://dx.doi.org/10.1002/adma.200700965
12.
P. Zubko, N. Jecklin, A. Torres-Pardo, P. Aguado-Puente, A. Gloter, C. Lichtensteiger, J. Junquera, O. Stephan, and J.-M. Triscone, Nano Lett. 12, 2846 (2012).
http://dx.doi.org/10.1021/nl3003717
13.
Y. L. Tang, Y. L. Zhu, X. L. Ma, A. Y. Borisevich, A. N. Morozovska, E. A. Eliseev, W. Y. Wang, Y. J. Wang, Y. B. Xu, Z. D. Zhang, and S. J. Pennycook, Science 348, 547 (2015).
http://dx.doi.org/10.1126/science.1259869
14.
A. K. Yadav, C. T. Nelson, S. L. Hsu, Z. Hong, J. D. Clarkson, C. M. Schlepuetz, A. R. Damodaran, P. Shafer, E. Arenholz, L. R. Dedon, D. Chen, A. Vishwanath, A. M. Minor, L. Q. Chen, J. F. Scott, L. W. Martin, and R. Ramesh, Nature 530, 198 (2016).
http://dx.doi.org/10.1038/nature16463
15.
P. Zubko, N. Stucki, C. Lichtensteiger, and J.-M. Triscone, Phys. Rev. Lett. 104, 187601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.187601
16.
J. Y. Jo, P. Chen, R. J. Sichel, S. J. Callori, J. Sinsheimer, E. M. Dufresne, M. Dawber, and P. G. Evans, Phys. Rev. Lett. 107, 055501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.055501
17.
V. A. Stephanovich, I. A. Luk’yanchuk, and M. G. Karkut, Phys. Rev. Lett. 94, 047601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.047601
18.
I. A. Luk’yanchuk, L. Lahoche, and A. Sené, Phys. Rev. Lett. 102, 147601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.147601
19.
S. Prosandeev and L. Bellaiche, Phys. Rev. B 75, 172109 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.172109
20.
P. Aguado-Puente and J. Junquera, Phys. Rev. Lett. 100, 177601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.177601
21.
S. Lisenkov, I. Ponomareva, and L. Bellaiche, Phys. Rev. B 79, 024101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.024101
22.
Q. Zhang, R. Herchig, and I. Ponomareva, Phys. Rev. Lett. 107, 177601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.177601
23.
E. Glazkova, K. McCash, C.-M. Chang, B. K. Mani, and I. Ponomareva, Appl. Phys. Lett. 104, 012909 (2014).
http://dx.doi.org/10.1063/1.4861639
24.
G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.119
25.
C. Thompson, D. D. Fong, R. V. Wang, F. Jiang, S. K. Streiffer, K. Latifi, J. A. Eastman, P. H. Fuoss, and G. B. Stephenson, Appl. Phys. Lett. 93, 182901 (2008).
http://dx.doi.org/10.1063/1.3013512
26.
S. Nomura and S. Sawasa, J. Phys. Soc. Jpn. 10, 108 (1954).
http://dx.doi.org/10.1143/JPSJ.10.108
27.
V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Phys. Solid State 39, 628 (1997).
http://dx.doi.org/10.1134/1.1129917
28.
Y. Somiya, A. S. Bhalla, and L. Cross, Int. J. Inorg. Mater. 3, 709 (2001).
http://dx.doi.org/10.1016/S1466-6049(01)00187-8
29.
X. Xing, J. Chen, J. Deng, and G. Liu, J. Alloys Compd. 360, 286 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00345-1
30.
G. Rispens, J. Heuver, and B. Noheda, Appl. Phys. Lett. 97, 262901 (2010).
http://dx.doi.org/10.1063/1.3532103
31.
S. Matzen, O. Nesterov, G. Rispens, J. A. Heuver, M. Biegalski, H. M. Christen, and B. Noheda, Nat. Commun. 5, 4415 (2014).
http://dx.doi.org/10.1038/ncomms5415
32.
For PST, optimal growth conditions were found to be at a total pressure of 180 mTorr with an oxygen/argon mixture of 20:29 and a substrate temperature of 540 °C. For LNO, the previously reported conditions in Ref. 56 were the one used.
33.
C. Lichtensteiger, “Ferroelectricity at the nanoscale: Study of size effects in lead titanate thin films,” Ph.D. thesis, University of Geneva, 2006.
34.
E. D. Specht, H.-M. Christen, D. P. Norton, and L. A. Boatner, Phys. Rev. Lett. 80, 4317 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4317
35.
K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).
http://dx.doi.org/10.1126/science.1103218
36.
N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1988
37.
N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Ferroelectrics 223, 79 (1999).
http://dx.doi.org/10.1080/00150199908260556
38.
N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 61, R825 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.R825
39.
All values are given in SI units (a1 = JmC−2, a11 = Jm5C−4, a111 = Jm9C−6, gij = JmC−2, cij = Jm−3). For PbTiO3: a1 = 3.8 × 105(T − 752), a11 = 4.229 × 108, a111 = 2.6 × 108, c11 = 1.746 × 1011, c12 = 0.794 × 1011, g11 = 1.14 × 1010, g12 = 4.63 × 108. For SrTiO3: a1 = 7.45 × 105(T − 51.64) (This is a linear approximation that is only valid above ≈100 K), a11 = 2.02 × 109, c11 = 3.36 × 1011, c12 = 1.07 × 1011, g11 = 1.25 × 1010, g12 = − 0.108 × 1010.
40.
G. Rispens, “Strain and composition effects in epitaxial ferroelectrics—Structural studies on PbxSr1−xTiO3 thin films grown by MBE,” Ph.D. thesis, University of Groningen, 2010.
41.
A. Gannepalli, D. G. Yablon, A. H. Tsou, and R. Proksch, Nanotechnology 22, 355705 (2011).
http://dx.doi.org/10.1088/0957-4484/22/35/355705
42.
G. Carbone, Ph.D. thesis, Institut für Theoretishe und Angewandte Physik der Universität Stuttgart, 2004.
43.
R. V. Wang, D. D. Fong, F. Jiang, M. J. Highland, P. H. Fuoss, C. Thompson, A. M. Kolpak, J. A. Eastman, S. K. Streiffer, A. M. Rappe, and G. B. Stephenson, Phys. Rev. Lett. 102, 047601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.047601
44.
L. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153169 (1935).
45.
C. Kittel, Solid State Commun. 10, 119 (1972).
http://dx.doi.org/10.1016/0038-1098(72)90362-6
46.
C. Lichtensteiger, J.-M. Triscone, J. Junquera, and P. Ghosez, Phys. Rev. Lett. 94, 047603 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.047603
47.
A. Kopal, P. Mokry, J. Fousek, and T. Bahnik, Ferroelectrics 223, 127 (1999).
http://dx.doi.org/10.1080/00150199908260562
48.
See http://imagejdocu.tudor.lu/doku.php?idmacro:radially_averaged_autocorrelation for the software used is ImageJ with the autocorrelation function macro.
49.
C. Blaser and P. Paruch, New J. Phys. 17, 013002 (2015).
http://dx.doi.org/10.1088/1367-2630/17/1/013002
50.
I. Batra and B. D. Silverman, Solid State Commun. 11, 291 (1972).
http://dx.doi.org/10.1016/0038-1098(72)91180-5
51.
R. R. Mehta, B. D. Silverman, and J. T. Jacobs, J. Appl. Phys. 44, 3379 (1973).
http://dx.doi.org/10.1063/1.1662770
52.
M. Glinchuk, E. Eliseev, and V. A. Stephanovich, Physica B 322, 356 (2002).
http://dx.doi.org/10.1016/S0921-4526(02)01271-1
53.
I. Kornev, H. Fu, and L. Bellaiche, Phys. Rev. Lett. 93, 196104 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.196104
54.
F. D. Guerville, I. Luk’yanchuk, L. Lahoche, and M. E. Marssi, Mater. Sci. Eng., B 120, 16 (2005).
http://dx.doi.org/10.1016/j.mseb.2005.02.039
55.
C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J.-M. Triscone, P. Ghosez, and J. Junquera, in Oxide Ultrathin Films: Science and Technology, edited by G. Pacchioni and S. Valeri (Wiley, New York, 2011), Chap. 12.
56.
R. Scherwitzl, P. Zubko, C. Lichtensteiger, and J.-M. Triscone, Appl. Phys. Lett. 95, 222114 (2009).
http://dx.doi.org/10.1063/1.3269591
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/8/10.1063/1.4960621
Loading
/content/aip/journal/aplmater/4/8/10.1063/1.4960621
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/8/10.1063/1.4960621
2016-08-10
2016-09-28

Abstract

We present a detailed study of compressively strained PbSrTiO thin films grown by off-axis radio frequency magnetron sputtering on (001)-oriented Nb-doped SrTiO substrates. Film tetragonality and the ferroelectric critical temperatures are measured for samples of different composition and thickness and compared with a phenomenological Landau-Devonshire model. 180 ferroelectric domains are observed using both X-ray diffraction and piezoresponse force microscopy and domain sizes obtained by the two techniques are compared and discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/8/1.4960621.html;jsessionid=Z_pYxVMx4KWQFnj82e2YTKDH.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/8/10.1063/1.4960621&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/8/10.1063/1.4960621&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/8/10.1063/1.4960621'
Top,Right1,Right2,Right3,