Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/8/10.1063/1.4961513
1.
O. Bierwagen, Semicond. Sci. Technol. 30, 024001 (2015).
http://dx.doi.org/10.1088/0268-1242/30/2/024001
2.
M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).
http://dx.doi.org/10.1088/0268-1242/31/3/034001
3.
S. Fujita and K. Kaneko, J. Cryst. Growth 401, 588 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.02.032
4.
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 106, 081910 (2015).
http://dx.doi.org/10.1063/1.4913447
5.
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 108, 072101 (2016).
http://dx.doi.org/10.1063/1.4942002
6.
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 109, 062103 (2016).
http://dx.doi.org/10.1063/1.4960633
7.
P. Vogt, A. Trampert, M. Ramsteiner, and O. Bierwagen, Phys. Status Solidi A 212, 1433 (2015).
http://dx.doi.org/10.1002/pssa.201431889
8.
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 392, 30 (2014).
http://dx.doi.org/10.1016/j.jcrysgro.2014.02.002
9.
T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007).
http://dx.doi.org/10.1143/JJAP.46.7217
10.
H. Peelaers, D. Steiauf, J. B. Varley, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 92, 085206 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.085206
11.
M. B. Maccioni, F. Ricci, and V. Fiorentini, J. Phys.: Conf. Ser. 566, 012016 (2014).
http://dx.doi.org/10.1088/1742-6596/566/1/012016
12.
M. B. Maccioni, F. Ricci, and V. Fiorentini, Appl. Phys. Express 8, 021102 (2015).
http://dx.doi.org/10.7567/APEX.8.021102
13.
T. Oshima and S. Fujita, Phys. Status Solidi C 5, 3113 (2008).
http://dx.doi.org/10.1002/pssc.200779297
14.
H. V. Wenckstern, D. Splith, M. Purfürst, Z. Zhang, C. Kranert, S. Müller, M. Lorenz, and M. Grundmann, Semicond. Sci. Technol. 30, 024005 (2015).
http://dx.doi.org/10.1088/0268-1242/30/2/024005
15.
C. Kranert, J. Lenzner, M. Jenderka, M. Lorenz, H. von Wenckstern, R. Schmidt-Grund, and M. Grundmann, J. Appl. Phys. 116, 013505 (2014).
http://dx.doi.org/10.1063/1.4886895
16.
M. Baldini, D. Gogova, K. Irmscher, M. Schmidbauer, G. Wagner, and R. Fornari, Cryst. Res. Technol. 49, 552 (2014).
http://dx.doi.org/10.1002/crat.201300410
17.
M. Baldini, M. Albrecht, D. Gogova, R. Schewski, and G. Wagner, Semicond. Sci. Technol. 30, 024013 (2015).
http://dx.doi.org/10.1088/0268-1242/30/2/024013
18.
R. Held, D. E. Crawford, A. M. Johnston, A. M. Dabiran, and P. I. Cohen, Surf. Rev. Lett. 5, 913 (1998).
http://dx.doi.org/10.1142/S0218625X98001274
19.
H. K. Noh, K. J. Chang, B. Ryu, and W. J. Lee, Phys. Rev. B 84, 1 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115205
20.
Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li, W. Lu, H. Jia, W. Liu, J. Zhou, and H. Chen, Sci. Rep. 4, 6734 (2014).
http://dx.doi.org/10.1038/srep06734
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/8/10.1063/1.4961513
Loading
/content/aip/journal/aplmater/4/8/10.1063/1.4961513
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/8/10.1063/1.4961513
2016-08-23
2016-12-05

Abstract

We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InGa)O for 0 ≤ ≤ 1. We measured the growth rate of the alloy by laser reflectrometry as a function of growth temperature for different metal-to-oxygen flux ratios , and nominal In concentrations in the metal flux. We determined the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration shows a strong dependence on the growth parameters , , and whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼m3 does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by GaO desorption the same way as during GaO growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low and/or excessively low kinetically enables In incorporation into (InGa)O. This study may help growing high-quality ternary compounds (InGa)O allowing band gap engineering over the range of 2.7–4.7 eV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/8/1.4961513.html;jsessionid=gDYfr6ny9wSn_lEbM_zFDJWm.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/8/10.1063/1.4961513&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/8/10.1063/1.4961513&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/8/10.1063/1.4961513'
Top,Right1,Right2,Right3,