Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
O. Bierwagen, Semicond. Sci. Technol. 30, 024001 (2015).
M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol. 31, 034001 (2016).
S. Fujita and K. Kaneko, J. Cryst. Growth 401, 588 (2014).
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 106, 081910 (2015).
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 108, 072101 (2016).
P. Vogt and O. Bierwagen, Appl. Phys. Lett. 109, 062103 (2016).
P. Vogt, A. Trampert, M. Ramsteiner, and O. Bierwagen, Phys. Status Solidi A 212, 1433 (2015).
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 392, 30 (2014).
T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys. 46, 7217 (2007).
H. Peelaers, D. Steiauf, J. B. Varley, A. Janotti, and C. G. Van de Walle, Phys. Rev. B 92, 085206 (2015).
M. B. Maccioni, F. Ricci, and V. Fiorentini, J. Phys.: Conf. Ser. 566, 012016 (2014).
M. B. Maccioni, F. Ricci, and V. Fiorentini, Appl. Phys. Express 8, 021102 (2015).
T. Oshima and S. Fujita, Phys. Status Solidi C 5, 3113 (2008).
H. V. Wenckstern, D. Splith, M. Purfürst, Z. Zhang, C. Kranert, S. Müller, M. Lorenz, and M. Grundmann, Semicond. Sci. Technol. 30, 024005 (2015).
C. Kranert, J. Lenzner, M. Jenderka, M. Lorenz, H. von Wenckstern, R. Schmidt-Grund, and M. Grundmann, J. Appl. Phys. 116, 013505 (2014).
M. Baldini, D. Gogova, K. Irmscher, M. Schmidbauer, G. Wagner, and R. Fornari, Cryst. Res. Technol. 49, 552 (2014).
M. Baldini, M. Albrecht, D. Gogova, R. Schewski, and G. Wagner, Semicond. Sci. Technol. 30, 024013 (2015).
R. Held, D. E. Crawford, A. M. Johnston, A. M. Dabiran, and P. I. Cohen, Surf. Rev. Lett. 5, 913 (1998).
H. K. Noh, K. J. Chang, B. Ryu, and W. J. Lee, Phys. Rev. B 84, 1 (2011).
Z. Deng, Y. Jiang, W. Wang, L. Cheng, W. Li, W. Lu, H. Jia, W. Liu, J. Zhou, and H. Chen, Sci. Rep. 4, 6734 (2014).

Data & Media loading...


Article metrics loading...



We present a detailed study of the reaction kinetics and thermodynamics of the plasma-assisted oxide molecular beam epitaxy of the ternary compound (InGa)O for 0 ≤ ≤ 1. We measured the growth rate of the alloy by laser reflectrometry as a function of growth temperature for different metal-to-oxygen flux ratios , and nominal In concentrations in the metal flux. We determined the In and Ga concentrations in the grown film by energy dispersive X-ray spectroscopy. The measured In concentration shows a strong dependence on the growth parameters , , and whereas growth on different co-loaded substrates shows that in the macroscopic regime of ∼m3 does neither depend on the detailed layer crystallinity nor on crystal orientation. The data unveil that, in presence of In, Ga incorporation is kinetically limited by GaO desorption the same way as during GaO growth. In contrast, In incorporation during ternary growth is thermodynamically suppressed by the presence of Ga due to stronger Ga–O bonds. Our experiments revealed that Ga adatoms decompose/etch the In–O bonds whereas In adatoms do not decompose/etch the Ga–O bonds. This result is supported by our thermochemical calculations. In addition we found that a low and/or excessively low kinetically enables In incorporation into (InGa)O. This study may help growing high-quality ternary compounds (InGa)O allowing band gap engineering over the range of 2.7–4.7 eV.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd