Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/8/10.1063/1.4961635
1.
B. S. Karasik, M. C. Gaidis, W. R. McGrath, B. Bumble, and H. G. LeDuc, Appl. Phys. Lett. 71, 1567 (1997).
http://dx.doi.org/10.1063/1.119967
2.
A. Shurakov, Y. Lobanov, and G. Goltsman, Supercond. Sci. Technol. 29, 023001 (2016).
http://dx.doi.org/10.1088/0953-2048/29/2/023001
3.
R. A. Wyss, B. S. Karasik, W. R. McGrath, B. Bumble, and H. Leduc, in Proceedings of the Tenth International Symposium on Space Terahertz Technology (National Radio Astronomy Observatory, Charlottesvile, 1999), pp. 215228.
4.
Y. Xu, M. Khafizov, L. Satrapinsky, P. Kúš, A. Plecenik, J. Karpinski, J. Jun, S. M. Kazakov, and R. Sobolewski, Phys. C 408-410, 90 (2004).
http://dx.doi.org/10.1016/j.physc.2004.02.043
5.
S. Cherednichenko, V. Drakinskiy, K. Ueda, and M. Naito, Appl. Phys. Lett. 90, 023507 (2007).
http://dx.doi.org/10.1063/1.2430928
6.
D. Cunnane, J. H. Kawamura, M. A. Wolak, N. Acharya, T. Tan, X. X. Xi, and B. S. Karasik, IEEE Trans. Appl. Supercond. 25, 3 (2015).
http://dx.doi.org/10.1109/TASC.2014.2369353
7.
G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Appl. Phys. Lett. 79, 705 (2001).
http://dx.doi.org/10.1063/1.1388868
8.
R. H. Hadfield, Nat. Photonics 3, 696 (2009).
http://dx.doi.org/10.1038/nphoton.2009.230
9.
A. J. Annunziata, D. F. Santavicca, J. D. Chudow, L. Frunzio, M. J. Rooks, A. Frydman, and D. E. Prober, IEEE Trans. Appl. Supercond. 19, 327 (2009).
http://dx.doi.org/10.1109/TASC.2009.2018740
10.
A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, Appl. Phys. Lett. 88, 111116 (2006).
http://dx.doi.org/10.1063/1.2183810
11.
D. Cunnane, C. Zhuang, K. Chen, X. X. Xi, J. Yong, and T. R. Lemberger, Appl. Phys. Lett. 102, 072603 (2013).
http://dx.doi.org/10.1063/1.4793194
12.
B. Komiyama, Z. Wang, and M. Tonouchi, Appl. Phys. Lett. 68, 562 (1996).
http://dx.doi.org/10.1063/1.116400
13.
H. Shimakage, M. Tatsumi, and Z. Wang, Supercond. Sci. Technol. 21, 095009 (2008).
http://dx.doi.org/10.1088/0953-2048/21/9/095009
14.
H. Shibata, H. Takesue, T. Honjo, T. Akazaki, and Y. Tokura, Appl. Phys. Lett. 97, 212504 (2010).
http://dx.doi.org/10.1063/1.3518723
15.
C. Cepek, R. Macovez, M. Sancrotti, L. Petaccia, R. Larciprete, S. Lizzit, and A. Goldoni, Appl. Phys. Lett. 2, 2002 (2004).
16.
H. Yamazaki, Y. Hikita, H. Hori, and H. Takagi, Appl. Phys. Lett. 83, 3740 (2003).
http://dx.doi.org/10.1063/1.1623323
17.
K. Ueda and M. Naito, J. Appl. Phys. 93, 2113 (2003).
http://dx.doi.org/10.1063/1.1537460
18.
A. J. M. Van Erven, T. H. Kim, M. Muenzenberg, and J. S. Moodera, Appl. Phys. Lett. 81, 4982 (2002).
http://dx.doi.org/10.1063/1.1530732
19.
X. Zeng, A. V. Pogrebnyakov, A. Kotcharov, J. E. Jones, X. X. Xi, E. M. Lysczek, J. M. Redwing, S. Xu, Q. Li, J. Lettieri, D. G. Schlom, W. Tian, X. Pan, and Z.-K. Liu, Nat. Mater. 1, 35 (2002).
http://dx.doi.org/10.1038/nmat703
20.
X. X. Xi, A. V. Pogrebnyakov, S. Y. Xu, K. Chen, Y. Cui, E. C. Maertz, C. G. Zhuang, Q. Li, D. R. Lamborn, J. M. Redwing, Z. K. Liu, A. Soukiassian, D. G. Schlom, X. J. Weng, E. C. Dickey, Y. B. Chen, W. Tian, X. Q. Pan, S. A. Cybart, and R. C. Dynes, Phys. C 456, 22 (2007).
http://dx.doi.org/10.1016/j.physc.2007.01.029
21.
M. A. Wolak, N. Acharya, T. Tan, D. Cunnane, B. S. Karasik, and X. Xi, IEEE Trans. Appl. Supercond. 25, 1 (2015).
http://dx.doi.org/10.1109/TASC.2015.2390415
22.
P. A. Stadelmann, Multislice HRTEM Simulation (2015).
23.
L. Chen, M. Azigu, H. Huang, J. Pan, C. Zhang, F. He, and Q. Feng, IEEE Trans. Appl. Supercond. 24, 2 (2014).
24.
C. Clavero, D. B. Beringer, W. M. Roach, J. R. Skuza, K. C. Wong, A. D. Batchelor, C. E. Reece, and R. A. Lukaszew, Cryst. Growth Des. 12, 5 (2012).
http://dx.doi.org/10.1021/cg3001834
25.
L. J. van der Pauw, Philips Res. Rep. 13, 1 (1958).
26.
Y. Wang, C. Zhuang, X. Sun, X. Huang, Q. Fu, Z. Liao, D. Yu, and Q. Feng, Supercond. Sci. Technol. 22, 125015 (2009).
http://dx.doi.org/10.1088/0953-2048/22/12/125015
27.
C. Kittel, Introduction to Solid State Physics (Wiley and Sons, New York, 1979).
28.
L. F. Mattheis and R. L. Tesardi, Phys. Rev. B 20, 2196 (1979).
http://dx.doi.org/10.1103/physrevb.20.2196
29.
A. Gurevich, S. Patnaik, V. Braccini, K. H. Kim, C. Mielke, X. Song, L. D. Cooley, S. D. Bu, D. M. Kim, J. H. Choi, L. J. Belenky, J. Giencke, M. K. Lee, W. Tian, X. Q. Pan, A. Siri, E. E. Hellstrom, C. B. Eom, and D. C. Larbalestier, Supercond. Sci. Technol. 17, 278 (2004).
http://dx.doi.org/10.1088/0953-2048/17/2/008
30.
F. Simon, A. Jánossy, T. Fehér, F. Murányi, S. Garaj, L. Forró, C. Petrovic, S. L. Bud’ko, G. Lapertot, V. G. Kogan, and P. C. Canfield, Phys. Rev. Lett. 87, 047002 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.047002
31.
M. Angst, R. Puzniak, A. Wisniewski, J. Jun, S. M. Kazakov, J. Karpinski, J. Roos, and H. Keller, Phys. Rev. Lett. 88, 167004 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.167004
32.
V. Braccini, A. Gurevich, J. E. Giencke, M. C. Jewell, C. B. Eom, D. C. Larbalestier, A. Pogrebnyakov, Y. Cui, B. T. Liu, Y. F. Hu, J. M. Redwing, Q. Li, X. X. Xi, R. K. Singh, R. Gandikota, J. Kim, B. Wilkens, N. Newman, J. Rowell, B. Moeckly, V. Ferrando, C. Tarantini, D. Marré, M. Putti, C. Ferdeghini, R. Vaglio, and E. Haanappel, Phys. Rev. B 71, 012504 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.012504
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/8/10.1063/1.4961635
Loading
/content/aip/journal/aplmater/4/8/10.1063/1.4961635
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/8/10.1063/1.4961635
2016-08-29
2016-09-26

Abstract

In this letter, we report on the structural and transport measurements of ultrathin MgB films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature ( ) and high critical current density (). The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB at the 2D limit.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/8/1.4961635.html;jsessionid=K-ll68xpmU6gXaT7jipS_SYc.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/8/10.1063/1.4961635&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/8/10.1063/1.4961635&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/8/10.1063/1.4961635'
Top,Right1,Right2,Right3,