Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4961210
1.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
2.
National Renewable Energy Laboratory, NREL Efficiency Chart, can be found under http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, 2016.
3.
M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
4.
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
5.
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, Energy Environ. Sci. 9, 1989 (2016).
http://dx.doi.org/10.1039/C5EE03874J
6.
T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, and H. J. Snaith, Adv. Energy Mater. 5, 1500963 (2015).
http://dx.doi.org/10.1002/aenm.201500963
7.
Z. Campeau, M. Mikofski, E. Hasselbrink, Y.-C. Shen, D. Kavulak, A. Terao, R. Lacerda, W. Caldwell, M. Anderson, Z. Defreitas, D. Degraaff, A. Budiman, and L. Leonard, SunPower Module Degradation Rate (SunPower Corporation, 2013).
8.
T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale, and B.-J. Hwang, Energy Environ. Sci. 9, 323 (2016).
http://dx.doi.org/10.1039/C5EE02733K
9.
D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, Sol. Energy Mater. Sol. Cells 147, 255 (2016).
http://dx.doi.org/10.1016/j.solmat.2015.12.025
10.
B. Li, Y. Li, C. Zheng, D. Gao, and W. Huang, RSC Adv. 6, 38079 (2016).
http://dx.doi.org/10.1039/C5RA27424A
11.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
12.
J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, Nanoscale 3, 4088 (2011).
http://dx.doi.org/10.1039/c1nr10867k
13.
S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, Nano Lett. 14, 5561 (2014).
http://dx.doi.org/10.1021/nl501982b
14.
J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, ACS Nano 9, 1955 (2015).
http://dx.doi.org/10.1021/nn506864k
15.
J. A. Christians, P. A. Miranda Herrera, and P. V. Kamat, J. Am. Chem. Soc. 137, 1530 (2015).
http://dx.doi.org/10.1021/ja511132a
16.
A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Chem. Mater. 27, 3397 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00660
17.
G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. van Franeker, D. W. DeQuilettes, S. Pathak, R. J. Sutton, G. Grancini, D. S. Ginger, R. A. J. Janssen, A. Petrozza, and H. J. Snaith, ACS Nano 9, 9380 (2015).
http://dx.doi.org/10.1021/acsnano.5b03626
18.
J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Nano Lett. 14, 2584 (2014).
http://dx.doi.org/10.1021/nl500390f
19.
Y. S. Kwon, J. Lim, H.-J. Yun, Y.-H. Kim, and T. Park, Energy Environ. Sci. 7, 1454 (2014).
http://dx.doi.org/10.1039/c3ee44174a
20.
J. Liu, S. Pathak, T. Stergiopoulos, T. Leijtens, K. Wojciechowski, S. Schumann, N. Kausch-Busies, and H. J. Snaith, J. Phys. Chem. Lett. 6, 1666 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00545
21.
S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, J. Phys. Chem. Lett. 5, 4207 (2014).
http://dx.doi.org/10.1021/jz5021795
22.
J. Liu, Y. Wu, C. Qin, X. Yang, T. Yasuda, A. Islam, K. Zhang, W. Peng, W. Chen, and L. Han, Energy Environ. Sci. 7, 2963 (2014).
http://dx.doi.org/10.1039/C4EE01589D
23.
W. H. Nguyen, C. D. Bailie, E. L. Unger, and M. D. McGehee, J. Am. Chem. Soc. 136, 10996 (2014).
http://dx.doi.org/10.1021/ja504539w
24.
Y. Liu, Q. Chen, H.-S. Duan, H. Zhou, Y. Yang, H. Chen, S. Luo, T.-B. Song, L. Dou, Z. Hong, and Y. Yang, J. Mater. Chem. A 3, 11940 (2015).
http://dx.doi.org/10.1039/C5TA02502H
25.
Y. Liu, Z. Hong, Q. Chen, H. Chen, W.-H. Chang, Y. M. Yang, T.-B. Song, and Y. Yang, Adv. Mater. 28, 440 (2016).
http://dx.doi.org/10.1002/adma.201504293
26.
J. Xu, O. Voznyy, R. Comin, X. Gong, G. Walters, M. Liu, P. Kanjanaboos, X. Lan, and E. H. Sargent, Adv. Mater. 28, 2807 (2016).
http://dx.doi.org/10.1002/adma.201505630
27.
G.-W. Kim, G. Kang, J. Kim, G.-Y. Lee, H. Il Kim, L. Pyeon, J. Lee, and T. Park, Energy Environ. Sci. 9, 2326 (2016).
http://dx.doi.org/10.1039/C6EE00709K
28.
J. Xiao, J. Shi, H. Liu, Y. Xu, S. Lv, Y. Luo, D. Li, Q. Meng, and Y. Li, Adv. Energy Mater. 5, 1401943 (2015).
http://dx.doi.org/10.1002/aenm.201401943
29.
T. Leijtens, T. Giovenzana, S. N. Habisreutinger, J. S. Tinkham, N. K. Noel, B. A. Kamino, G. Sadoughi, A. Sellinger, and H. J. Snaith, ACS Appl. Mater. Interfaces 8, 5981 (2016).
http://dx.doi.org/10.1021/acsami.5b10093
30.
Y. Ma, Y.-H. Chung, L. Zheng, D. Zhang, X. Yu, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, and D. Zou, ACS Appl. Mater. Interfaces 7, 6406 (2015).
http://dx.doi.org/10.1021/acsami.5b00149
31.
L. Zheng, Y.-H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, and Q. Gong, Chem. Commun. 50, 11196 (2014).
http://dx.doi.org/10.1039/C4CC04680C
32.
Y.-K. Wang, Z.-C. Yuan, G.-Z. Shi, Y.-X. Li, Q. Li, F. Hui, B.-Q. Sun, Z.-Q. Jiang, and L.-S. Liao, Adv. Funct. Mater. 26, 1375 (2016).
http://dx.doi.org/10.1002/adfm.201504245
33.
A. Abate, S. Paek, F. Giordano, J. P. Correa Baena, M. Saliba, P. Gao, T. Matsui, J. Ko, S. M. Zakeeruddin, K. H. Dahmen, A. Hagfeldt, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 8, 2946 (2015).
http://dx.doi.org/10.1039/C5EE02014J
34.
S. Ito, S. Tanaka, K. Manabe, and H. Nishino, J. Phys. Chem. C 118, 16995 (2014).
http://dx.doi.org/10.1021/jp500449z
35.
P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin, and M. Grätzel, Nat. Commun. 5, 3384 (2014).
http://dx.doi.org/10.1038/ncomms4834
36.
S. Ito, S. Tanaka, H. Vahlman, H. Nishino, K. Manabe, and P. Lund, ChemPhysChem 15, 1194 (2014).
http://dx.doi.org/10.1002/cphc.201301047
37.
S. Chavhan, O. Miguel, H.-J. Grande, V. Gonzalez-Pedro, R. S. Sanchez, E. M. Barea, I. Mora-Sero, and R. Tena-Zaera, J. Mater. Chem. A 2, 12754 (2014).
http://dx.doi.org/10.1039/c4ta01310g
38.
G. Murugadoss, G. Mizuta, S. Tanaka, H. Nishino, T. Umeyama, H. Imahori, and S. Ito, APL Mater. 2, 081511 (2014).
http://dx.doi.org/10.1063/1.4891597
39.
S. Ito, S. Tanaka, and H. Nishino, Chem. Lett. 44, 849 (2015).
http://dx.doi.org/10.1246/cl.150238
40.
S. Ito, S. Tanaka, and H. Nishino, J. Phys. Chem. Lett. 6, 881 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00122
41.
Y. Ma, L. Zheng, Y.-H. Chung, S. Chu, L. Xiao, Z. Chen, S. Wang, B. Qu, Q. Gong, Z. Wu, and X. Hou, Chem. Commun. 50, 12458 (2014).
http://dx.doi.org/10.1039/C4CC01962H
42.
J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).
http://dx.doi.org/10.1021/ja411014k
43.
G. A. Sepalage, S. Meyer, A. Pascoe, A. D. Scully, F. Huang, U. Bach, Y.-B. Cheng, and L. Spiccia, Adv. Funct. Mater. 25, 5650 (2015).
http://dx.doi.org/10.1002/adfm.201502541
44.
B. Abdollahi Nejand, V. Ahmadi, and H. R. Shahverdi, ACS Appl. Mater. Interfaces 7, 21807 (2015).
http://dx.doi.org/10.1021/acsami.5b05477
45.
Z. Yu and L. Sun, Adv. Energy Mater. 5, 1500213 (2015).
http://dx.doi.org/10.1002/aenm.201500213
46.
D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, Sci. Adv. 2, e1501170 (2016).
http://dx.doi.org/10.1126/sciadv.1501170
47.
W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015).
http://dx.doi.org/10.1126/science.aaa9272
48.
J. Dong, Y. Zhao, J. Shi, H. Wei, J. Xiao, X. Xu, J. Luo, J. Xu, D. Li, Y. Luo, and Q. Meng, Chem. Commun. 50, 13381 (2014).
http://dx.doi.org/10.1039/C4CC04908J
49.
S. Guarnera, A. Abate, W. Zhang, J. M. Foster, G. Richardson, A. Petrozza, and H. J. Snaith, J. Phys. Chem. Lett. 6, 432 (2015).
http://dx.doi.org/10.1021/jz502703p
50.
E. M. Sanehira, B. J. Tremolet de Villers, P. Schulz, M. O. Reese, S. Ferrere, K. Zhu, L. Y. Lin, J. J. Berry, and J. M. Luther, ACS Energy Lett. 1, 38 (2016).
http://dx.doi.org/10.1021/acsenergylett.6b00013
51.
W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, and Y. Qiu, J. Mater. Chem. A 2, 13587 (2014).
http://dx.doi.org/10.1039/C4TA01550A
52.
G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, J. Mater. Chem. A 2, 705 (2014).
http://dx.doi.org/10.1039/C3TA13606J
53.
J. Cao, J. Yin, S. Yuan, Y. Zhao, J. Li, and N. Zheng, Nanoscale 7, 9443 (2015).
http://dx.doi.org/10.1039/C5NR01820J
54.
J. Zhang, Z. Hu, L. Huang, G. Yue, J. Liu, X. Lu, Z. Hu, M. Shang, L. Han, and Y. Zhu, Chem. Commun. 51, 7047 (2015).
http://dx.doi.org/10.1039/C5CC00128E
55.
H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee, and K. Lee, Energy Environ. Sci. 9, 1258 (2016).
http://dx.doi.org/10.1039/C6EE00612D
56.
Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J. M. Pringle, U. Bach, L. Spiccia, and Y.-B. Cheng, J. Mater. Chem. A 3, 8139 (2015).
http://dx.doi.org/10.1039/C5TA00358J
57.
Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, and Y. Qi, Adv. Mater. Interfaces 2, 2 (2015).
http://dx.doi.org/10.1002/admi.201500195
58.
A. Guerrero, J. You, C. Aranda, Y. S. Kang, G. Garcia-Belmonte, H. Zhou, J. Bisquert, and Y. Yang, ACS Nano 10, 218 (2015).
http://dx.doi.org/10.1021/acsnano.5b03687
59.
F. Guo, H. Azimi, Y. Hou, T. Przybilla, M. Hu, C. Bronnbauer, S. Langner, E. Spiecker, K. Forberich, and C. J. Brabec, Nanoscale 7, 1642 (2014).
http://dx.doi.org/10.1039/C4NR06033D
60.
Z. Ku, Y. Rong, M. Xu, T. Liu, and H. Han, Sci. Rep. 3, 3132 (2013).
http://dx.doi.org/10.1038/srep03132
61.
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, and H. Han, Science 345, 295 (2014).
http://dx.doi.org/10.1126/science.1254763
62.
Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li, and H. Han, J. Phys. Chem. Lett. 5, 2160 (2014).
http://dx.doi.org/10.1021/jz500833z
63.
X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, and M. Wang, Nano Lett. 15, 2402 (2015).
http://dx.doi.org/10.1021/nl504701y
64.
Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, and I. D. Sharp, J. Phys. Chem. Lett. 6, 493 (2015).
http://dx.doi.org/10.1021/jz502720a
65.
H. Zhou, Y. Shi, K. Wang, Q. Dong, X. Bai, Y. Xing, Y. Du, and T. Ma, J. Phys. Chem. C 119, 4600 (2015).
http://dx.doi.org/10.1021/jp512101d
66.
X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, and M. Grätzel, Energy Technol. 3, 551 (2015).
http://dx.doi.org/10.1002/ente.201500045
67.
T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, Nat. Commun. 4, 2885 (2013).
http://dx.doi.org/10.1038/ncomms3885
68.
A. J. Pearson, G. E. Eperon, P. E. Hopkinson, S. N. Habisreutinger, J. T.-W. Wang, H. J. Snaith, and N. C. Greenham, Adv. Energy Mater. 6, 1600014 (2016).
http://dx.doi.org/10.1002/aenm.201600014
69.
D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, and S. A. Haque, Energy Environ. Sci. 9, 1655 (2016).
http://dx.doi.org/10.1039/C6EE00409A
70.
F. T. F. O’Mahony, Y. H. Lee, C. Jellett, S. Dmitrov, D. T. J. Bryant, J. R. Durrant, B. C. O’Regan, M. Graetzel, M. K. Nazeeruddin, and S. A. Haque, J. Mater. Chem. A 3, 7219 (2015).
http://dx.doi.org/10.1039/c5ta01221j
71.
N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S. A. Haque, Angew. Chem., Int. Ed. 54, 8208 (2015).
http://dx.doi.org/10.1002/anie.201503153
72.
A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T. M. Brown, and R. Jose, J. Power Sources 283, 61 (2015).
http://dx.doi.org/10.1016/j.jpowsour.2015.02.084
73.
A. V Vinogradov, H. Zaake-Hertling, E. Hey-Hawkins, A. V. Agafonov, G. A. Seisenbaeva, V. G. Kessler, and V. V. Vinogradov, Chem. Commun. 50, 10210 (2014).
http://dx.doi.org/10.1039/C4CC01978D
74.
D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. J. Johansson, and A. Hagfeldt, Nanoscale 5, 11686 (2013).
http://dx.doi.org/10.1039/c3nr01542d
75.
T. L. Thompson and J. T. Yates, Top. Catal. 35, 197 (2005).
http://dx.doi.org/10.1007/s11244-005-3825-1
76.
M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011).
http://dx.doi.org/10.1016/j.surfrep.2011.01.001
77.
S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, Angew. Chem., Int. Ed. Engl. 52, 7372 (2013).
http://dx.doi.org/10.1002/anie.201207199
78.
K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C. Li, R. H. Friend, A.K.-Y. Jen, and H. J. Snaith, ACS Nano 8, 12701 (2014).
http://dx.doi.org/10.1021/nn505723h
79.
K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M. T. Hörantner, J. T. W. Wang, C. Z. Li, A. K. Y. Jen, T. L. Lee, and H. J. Snaith, J. Phys. Chem. Lett. 6, 2399 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00902
80.
W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan, A. Haghighirad, M. Johnston, L. Wang, and H. Snaith, Energy Environ. Sci. 9, 490 (2016).
http://dx.doi.org/10.1039/C5EE03522H
81.
S. K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K. C. Gödel, Y. Vaynzof, A. Santhala, S. I. Watanabe, D. J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H. J. Snaith, and U. Steiner, Adv. Funct. Mater. 24, 6046 (2014).
http://dx.doi.org/10.1002/adfm.201401658
82.
B. Roose, K. C. Gödel, S. Pathak, A. Sadhanala, J. P. C. Baena, B. D. Wilts, H. J. Snaith, U. Wiesner, M. Grätzel, U. Steiner, and A. Abate, Adv. Energy Mater. 6, 1501868 (2016).
http://dx.doi.org/10.1002/aenm.201501868
83.
I. Hwang and K. Yong, ACS Appl. Mater. Interfaces 8, 4226 (2016).
http://dx.doi.org/10.1021/acsami.5b12336
84.
Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, and J. Huang, Energy Environ. Sci. 7, 2619 (2014).
http://dx.doi.org/10.1039/C4EE01138D
85.
P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, Nat. Commun. 4, 2761 (2013).
http://dx.doi.org/10.1038/ncomms3761
86.
H. Choi, C.-K. Mai, H.-B. Kim, J. Jeong, S. Song, G. C. Bazan, J. Y. Kim, and A. J. Heeger, Nat. Commun. 6, 7348 (2015).
http://dx.doi.org/10.1038/ncomms8348
87.
F. Igbari, M. Li, Y. Hu, Z. Wang, and L.-S. Liao, J. Mater. Chem. A 4, 1326 (2016).
http://dx.doi.org/10.1039/c5ta07957h
88.
F. Hou, Z. Su, F. Jin, X. Yan, L. Wang, H. Zhao, J. Zhu, B. Chu, and W. Li, Nanoscale 7, 9427 (2015).
http://dx.doi.org/10.1039/C5NR01864A
89.
Z. K. Wang, M. Li, D. X. Yuan, X. B. Shi, H. Ma, and L. S. Liao, ACS Appl. Mater. Interfaces 7, 9645 (2015).
http://dx.doi.org/10.1021/acsami.5b01330
90.
J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, and S.-I. Na, Nano Energy 12, 96 (2014).
http://dx.doi.org/10.1016/j.nanoen.2014.12.022
91.
J. H. Kim, P. W. Liang, S. T. Williams, N. Cho, C. C. Chueh, M. S. Glaz, D. S. Ginger, and A. K. Y. Jen, Adv. Mater. 27, 695 (2015).
http://dx.doi.org/10.1002/adma.201404189
92.
F. Zhang, X. Yang, M. Cheng, W. Wang, and L. Sun, Nano Energy 20, 108 (2016).
http://dx.doi.org/10.1016/j.nanoen.2015.11.034
93.
O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photonics 8, 128 (2013).
http://dx.doi.org/10.1038/nphoton.2013.341
94.
J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. (Michael) Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, Nat. Nanotechnol. 11, 1 (2015).
http://dx.doi.org/10.1038/nnano.2015.230
95.
J. Lewis, Mater. Today 9, 38 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71446-8
96.
F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 3633 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.055
97.
S. Schuller, P. Schilinsky, J. Hauch, and C. J. Brabec, Appl. Phys. A: Mater. Sci. Process. 79, 37 (2004).
http://dx.doi.org/10.1007/s00339-003-2499-4
98.
I. Hwang, I. Jeong, J. Lee, M. J. Ko, and K. Yong, ACS Appl. Mater. Interfaces 7, 17330 (2015).
http://dx.doi.org/10.1021/acsami.5b04490
99.
C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao, and Y.-C. Chang, Chem. Mater. 27, 5122 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01933
100.
H. C. Weerasinghe, Y. Dkhissi, A. D. Scully, R. A. Caruso, and Y. B. Cheng, Nano Energy 18, 118 (2015).
http://dx.doi.org/10.1016/j.nanoen.2015.10.006
101.
M. Grätzel and N. Park, Nano 09, 1440002 (2014).
http://dx.doi.org/10.1142/S1793292014400025
102.
X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, and N. Yuan, J. Mater. Chem. A 3, 5360 (2015).
http://dx.doi.org/10.1039/C4TA06128D
103.
J. Zhao, B. Cai, Z. Luo, Y. Dong, Y. Zhang, H. Xu, B. Hong, Y. Yang, L. Li, W. Zhang, and C. Gao, Sci. Rep. 6, 21976 (2016).
http://dx.doi.org/10.1038/srep21976
104.
G. Niu, X. Guo, and L. Wang, J. Mater. Chem. A 3, 8970 (2014).
http://dx.doi.org/10.1039/C4TA04994B
105.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
106.
F. C. Schaefer, J. Org. Chem. 27, 3608 (1962).
http://dx.doi.org/10.1021/jo01057a052
107.
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
108.
Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, and S. F. Liu, Adv. Mater. 27, 5176 (2015).
http://dx.doi.org/10.1002/adma.201502597
109.
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H. Boyen, Adv. Energy Mater. 5, 1500477 (2015).
http://dx.doi.org/10.1002/aenm.201500477
110.
J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. Il Seok, Nano Lett. 13, 1764 (2013).
http://dx.doi.org/10.1021/nl400349b
111.
Y. Chen, B. Li, W. Huang, D. Gao, and Z. Liang, Chem. Commun. (Cambridge) 51, 11997 (2015).
http://dx.doi.org/10.1039/C5CC03615A
112.
Y. Iwadate, K. Kawamura, K. Igarashi, and J. Mochinaga, J. Phys. Chem. 86, 5205 (1982).
http://dx.doi.org/10.1021/j100223a028
113.
A. Halder, R. Chulliyil, A. S. Subbiah, T. Khan, S. Chattoraj, A. Chowdhury, and S. K. Sarkar, J. Phys. Chem. Lett. 6, 3483 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01327
114.
Q. Jiang, D. Rebollar, J. Gong, E. L. Piacentino, C. Zheng, and T. Xu, Angew. Chem., Int. Ed. Engl. 54, 7617 (2015).
http://dx.doi.org/10.1002/anie.201503038
115.
M. Daub and H. Hillebrecht, Angew. Chem. 127, 11168 (2015).
http://dx.doi.org/10.1002/ange.201506449
116.
Q. Tai, P. You, H. Sang, Z. Liu, C. Hu, H. L. W. Chan, and F. Yan, Nat. Commun. 7, 11105 (2016).
http://dx.doi.org/10.1038/ncomms11105
117.
A. M. Ganose, C. N. Savory, and D. O. Scanlon, J. Phys. Chem. Lett. 6, 4594 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b02177
118.
I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, Angew. Chem. 126, 11414 (2014).
http://dx.doi.org/10.1002/ange.201406466
119.
D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 7843 (2015).
http://dx.doi.org/10.1021/jacs.5b03796
120.
N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. Il Seok, Nature 517, 476 (2015).
http://dx.doi.org/10.1038/nature14133
121.
N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, Angew. Chem., Int. Ed. 53, 3151 (2014).
http://dx.doi.org/10.1002/anie.201309361
122.
G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. Herz, and H. Snaith, Energy Environ. Sci. 7, 982 (2014).
http://dx.doi.org/10.1039/c3ee43822h
123.
G. E. Eperon, G. M. Paterno’, R. J. Sutton, A. Zampetti, A. Haghighirad, F. Cacialli, and H. Snaith, J. Mater. Chem. A 3, 19688 (2015).
http://dx.doi.org/10.1039/C5TA06398A
124.
R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, and H. J. Snaith, Adv. Energy Mater. 6, 1502458 (2016).
http://dx.doi.org/10.1002/aenm.201502458
125.
M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 7, 167 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02597
126.
R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, and M. D. McGehee, J. Phys. Chem. Lett. 7, 746 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b00002
127.
D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, and H. J. Snaith, Science 351, 151 (2016).
http://dx.doi.org/10.1126/science.aad5845
128.
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, Adv. Energy Mater. 5, 1501310 (2015).
http://dx.doi.org/10.1002/aenm.201501310
129.
Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. Berry, and K. Zhu, Chem. Mater. 28, 284 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b04107
130.
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Rothlisberger, and M. Grätzel, Energy Environ. Sci. 9, 656 (2015).
http://dx.doi.org/10.1039/C5EE03255E
131.
A. Binek, F. C. Hanusch, P. Docampo, and T. Bein, J. Phys. Chem. Lett. 6, 1249 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00380
132.
J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, Adv. Mater. 26, 4991 (2014).
http://dx.doi.org/10.1002/adma.201401137
133.
T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, J. Phys. Chem. C 118, 16458 (2014).
http://dx.doi.org/10.1021/jp411112k
134.
M. Kulbak, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 6, 2452 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00968
135.
C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, and M. G. Kanatzidis, Cryst. Growth Des. 13, 2722 (2013).
http://dx.doi.org/10.1021/cg400645t
136.
Q. Ma, S. Huang, X. Wen, M. A. Green, and A. W. Y. Ho-Baillie, Adv. Energy Mater. 6, 1502202 (2016).
http://dx.doi.org/10.1002/aenm.201502202
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4961210
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4961210
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4961210
2016-08-25
2016-09-28

Abstract

The power-conversion efficiency of perovskite solar cells has soared up to 22.1% earlier this year. Within merely five years, the perovskite solar cell can now compete on efficiency with inorganic thin-film technologies, making it the most promising of the new, emerging photovoltaic solar cell technologies. The next grand challenge is now the aspect of stability. The hydrophilicity and volatility of the organic methylammonium makes the work-horse material methylammonium lead iodide vulnerable to degradation through humidity and heat. Additionally, ultraviolet radiation and oxygen constitute stressors which can deteriorate the device performance. There are two fundamental strategies to increasing the device stability: developing protective layers around the vulnerable perovskite absorber and developing a more resilient perovskite absorber. The most important reports in literature are summarized and analyzed here, letting us conclude that any long-term stability, on par with that of inorganic thin-film technologies, is only possible with a more resilient perovskite incorporated in a highly protective device design.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4961210.html;jsessionid=lurgmUB7itcH-ChFTiFqxKyf.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4961210&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4961210&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4961210'
Top,Right1,Right2,Right3,