Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4961598
1.
A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, Science 311, 1270 (2006).
http://dx.doi.org/10.1126/science.1123811
2.
B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).
http://dx.doi.org/10.1126/science.1159655
3.
J. F. Scott, Annu. Rev. Mater. Res. 41, 229 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100341
4.
M. Valant, Prog. Mater. Sci. 57, 980 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2012.02.001
5.
X. Moya, S. Kar-Narayan, and N. D. Mathur, Nat. Mater. 13, 439 (2014).
http://dx.doi.org/10.1038/nmat3951
6.
S. Crossley, N. D. Mathur, and X. Moya, AIP Adv. 5, 067153 (2015).
http://dx.doi.org/10.1063/1.4922871
7.
X.-S. Qian, S.-G. Lu, X. Li, H. Gu, L.-C. Chien, and Q. Zhang, Adv. Funct. Mater. 23, 2894 (2013).
http://dx.doi.org/10.1002/adfm.201202686
8.
Q. Li, G. Zhang, X. Zhang, S. Jiang, Y. Zeng, and Q. Wang, Adv. Mater. 27, 2236 (2015).
http://dx.doi.org/10.1002/adma.201405495
9.
G. Zhang, X. Zhang, T. Yang, Q. Li, L.-Q. Chen, S. Jiang, and Q. Wang, ACS Nano 9, 7164 (2015).
http://dx.doi.org/10.1021/acsnano.5b03371
10.
S. G. Lu, B. Rožič, Q. M. Zhang, Z. Kutnjak, and B. Neese, Appl. Phys. Lett. 98, 122906 (2011).
http://dx.doi.org/10.1063/1.3569953
11.
F. Le Goupil, A. Berenov, A.-K. Axelsson, M. Valant, and N. McN. Alford, J. Appl. Phys. 111, 124109 (2012).
http://dx.doi.org/10.1063/1.4730338
12.
X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, Ll. Mañosa, and N. D. Mathur, Adv. Mater. 25, 1360 (2013).
http://dx.doi.org/10.1002/adma.201203823
13.
S. Kar-Narayan, S. Crossley, X. Moya, V. Kovacova, J. Abergel, A. Bontempi, N. Baier, E. Defay, and N. D. Mathur, Appl. Phys. Lett. 102, 032903 (2013).
http://dx.doi.org/10.1063/1.4788924
14.
Y. Jia and Y.-S. Ju, Appl. Phys. Lett. 103, 042903 (2013).
http://dx.doi.org/10.1063/1.4816333
15.
D. Guo, J. Gao, Y.-J. Yu, S. Santhanam, G. K. Fedder, A. J. H. McGaughey, and S. C. Yao, Appl. Phys. Lett. 105, 031906 (2014).
http://dx.doi.org/10.1063/1.4890676
16.
T. Tong, J. Karthik, R. V. K. Mangalam, L. W. Martin, and D. G. Cahill, Phys. Rev. B 90, 094116 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.094116
17.
Y. Jia and Y.-S. Ju, Appl. Phys. Lett. 100, 242901 (2012).
http://dx.doi.org/10.1063/1.4729038
18.
H. Gu, X. Qian, X. Li, B. Craven, W. Zhu, A. Cheng, S. C. Yao, and Q. M. Zhang, Appl. Phys. Lett. 102, 122904 (2013).
http://dx.doi.org/10.1063/1.4799283
19.
H. Gu, X.-S. Qian, H.-J. Ye, and Q. M. Zhang, Appl. Phys. Lett. 105, 162905 (2014).
http://dx.doi.org/10.1063/1.4898812
20.
U. Plaznik, A. Kitanovski, B. Rožič, B. Malič, H. Ursič, S. Drnovšek, J. Cilenšek, M. Vrabelj, A. Poredoš, and Z. Kutnjak, Appl. Phys. Lett. 106, 043903 (2015).
http://dx.doi.org/10.1063/1.4907258
21.
S. J. Smullin, Y. Wang, and D. E. Schwartz, Appl. Phys. Lett. 107, 093903 (2015).
http://dx.doi.org/10.1063/1.4928716
22.
H. F. Kay and P. Vousden, London Edinburgh Dublin Philos. Mag. J. Sci. 40, 1019 (1949).
http://dx.doi.org/10.1080/14786444908561371
23.
G. H. Kwei, A. C. Lawson, S. J. L. Billinge, and S.-W. Cheong, J. Phys. Chem. 97, 2368 (1993).
http://dx.doi.org/10.1021/j100112a043
24.
G. Shirane, S. Hoshino, and K. Suzuki, Phys. Rev. 80, 1105 (1950).
http://dx.doi.org/10.1103/PhysRev.80.1105
25.
Ll. Mañosa, A. Planes, and M. Acet, J. Mater. Chem. A 1, 4925 (2013).
http://dx.doi.org/10.1039/c3ta01289a
26.
E. A. Mikhaleva, I. N. Flerov, M. V. Gorev, M. S. Molokeev, A. V. Cherepakhin, A. V. Kartashev, N. V. Mikhashenok, and K. A. Sablina, Phys. Solid State 54, 1832 (2012).
http://dx.doi.org/10.1134/S1063783412090181
27.
Y. Liu, J. Wei, P.-E. Janolin, I. C. Infante, X. Lou, and B. Dkhil, Appl. Phys. Lett. 104, 162904 (2014).
http://dx.doi.org/10.1063/1.4873162
28.
P. Lloveras, E. Stern-Taulats, M. Barrio, J.-Ll. Tamarit, S. Crossley, W. Li, V. Pomjakushin, A. Planes, Ll. Mañosa, N. D. Mathur, and X. Moya, Nat. Commun. 6, 8801 (2015).
http://dx.doi.org/10.1038/ncomms9801
29.
J. Ortín and A. Planes, Acta Metall. 36, 18731889 (1988).
http://dx.doi.org/10.1016/0001-6160(88)90291-X
30.
J. Rodriguez, T. Roisnel, and P. J. Gonzales, FullProf Suite (Laboratoire Leon Brillouin, CEA-CNRS, CEN Saclay, France, 2005).
31.
G. Shirane, H. Danner, A. Pavlovic, and R. Pepinsky, Phys. Rev. 93, 672 (1954).
http://dx.doi.org/10.1103/PhysRev.93.672
32.
X. Moya, L. E. Hueso, F. Maccherozzi, A. I. Tovstolytkin, D. I. Podyalovskii, C. Ducati, L. C. Phillips, M. Ghidini, O. Hovorka, A. Berger, M. E. Vickers, E. Defay, S. S. Dhesi, and N. D. Mathur, Nat. Mater. 12, 52 (2013).
http://dx.doi.org/10.1038/nmat3463
33.
W. J. Merz, Phys. Rev. 77, 52 (1950).
http://dx.doi.org/10.1103/PhysRev.78.52
34.
J. Klimowski, Phys. Status Solidi 2, 456 (1962).
http://dx.doi.org/10.1002/pssb.19620020410
35.
S. Minomura, T. Kawakubo, T. Nakagawa, and S. Sawada, Jpn. J. Appl. Phys. 3, 562 (1964).
http://dx.doi.org/10.1143/JJAP.3.562
36.
G. A. Samara, Phys. Rev. 151, 378 (1966).
http://dx.doi.org/10.1103/PhysRev.151.378
37.
G. A. Samara, Ferroelectrics 2, 277 (1971).
http://dx.doi.org/10.1080/00150197108234102
38.
R. Clarke and L. Benguigui, J. Phys. C: Solid State Phys. 10, 1963 (1977).
http://dx.doi.org/10.1088/0022-3719/10/11/030
39.
M. Malinowski, K. Lukaszewicz, and S. Asbrink, J. Appl. Crystallogr. 19, 7 (1986).
http://dx.doi.org/10.1107/S0021889886090088
40.
T. Ishidate, S. Abe, H. Takahashi, and N. Môri, Phys. Rev. Lett. 78, 2397 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2397
41.
J. L. Zhu, S. Lin, S. M. Feng, F. Y. Li, L. J. Wang, C. Q. Jin, X. H. Wang, and L. T. Li, J. Phys.: Conf. Ser. 121, 162005 (2008).
http://dx.doi.org/10.1088/1742-6596/121/16/162005
42.
S. Minomura, M. Tanaka, B. Okai, and H. Nagasaki, J. Phys. Soc. Jpn. 28(Suppl.), 404 (1970).
43.
Y. Bai, K. Ding, G.-P. Zheng, S.-Q. Shi, J.-L. Cao, and L. Qiao, AIP Adv. 2, 022162 (2012).
http://dx.doi.org/10.1063/1.4732146
44.
Ll. Mañosa, D. González-Alonso, A. Planes, E. Bonnot, M. Barrio, J.-Ll. Tamarit, S. Aksoy, and M. Acet, Nat. Mater. 9, 478 (2010).
http://dx.doi.org/10.1038/nmat2731
45.
S. Yuce, M. Barrio, B. Emre, E. Stern-Taulats, A. Planes, J.-Ll. Tamarit, Y. Mudryk, K. A. Gschneidner, Jr., V. K. Pecharsky, and Ll. Mañosa, Appl. Phys. Lett. 101, 071906 (2012).
http://dx.doi.org/10.1063/1.4745920
46.
Ll. Mañosa, D. González-Alonso, A. Planes, M. Barrio, J.-Ll. Tamarit, I. S. Titov, M. Acet, A. Bhattacharyya, and S. Majumdar, Nat. Commun. 2, 595 (2011).
http://dx.doi.org/10.1038/ncomms1606
47.
E. Stern-Taulats, A. Planes, P. Lloveras, M. Barrio, J.-Ll. Tamarit, S. Pramanick, S. Majumdar, C. Frontera, and Ll. Mañosa, Phys. Rev. B 89, 214105 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.214105
48.
D. Matsunami, A. Fujita, K. Takenaka, and M. Kano, Nat. Mater. 14, 73 (2014).
http://dx.doi.org/10.1038/nmat4117
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4961598
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4961598
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4961598
2016-09-19
2016-12-08

Abstract

We use calorimetry to identify pressure-driven isothermal entropy changes in ceramic samples of the prototypical ferroelectric BaTiO. Near the structural phase transitions at ∼400 K (cubic-tetragonal) and ∼280 K (tetragonal-orthorhombic), the inverse barocaloric response differs in sign and magnitude from the corresponding conventional electrocaloric response. The differences in sign arise due to the decrease in unit-cell volume on heating through the transitions, whereas the differences in magnitude arise due to the large volumetric thermal expansion on either side of the transitions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4961598.html;jsessionid=SggX4kPzo2qDG5yl2YTbsRPD.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4961598&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4961598&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4961598'
Top,Right1,Right2,Right3,