Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4962142
1.
S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014).
http://dx.doi.org/10.1021/jz500279b
2.
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
3.
W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348, 1234 (2015).
http://dx.doi.org/10.1126/science.aaa9272
4.
5.
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
6.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
7.
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, Angew. Chem. 126, 10056 (2014).
http://dx.doi.org/10.1002/ange.201405334
8.
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater. 13, 897 (2014).
http://dx.doi.org/10.1038/nmat4014
9.
J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
10.
A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, and D. G. Lidzey, Energy Environ. Sci. 7, 2944 (2014).
http://dx.doi.org/10.1039/C4EE01546K
11.
M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
12.
C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, Adv. Mater. 26, 6647 (2014).
http://dx.doi.org/10.1002/adma.201402461
13.
Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, J. Am. Chem. Soc. 136, 622 (2014).
http://dx.doi.org/10.1021/ja411509g
14.
P.-S. Shen, J.-S. Chen, Y.-H. Chiang, M.-H. Li, T.-F. Guo, and P. Chen, Adv. Mater. Interfaces 3, 1500849 (2016).
http://dx.doi.org/10.1002/admi.201500849
15.
L. K. Ono, M. R. Leyden, S. Wang, and Y. Qi, J. Mater. Chem. A 4, 6693 (2016).
http://dx.doi.org/10.1039/C5TA08963H
16.
O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M. K. Nazeeruddin, and H. J. Bolink, Adv. Energy Mater. 4, 1400345 (2014).
http://dx.doi.org/10.1002/aenm.201400345
17.
O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photonics 8, 128 (2014).
http://dx.doi.org/10.1038/nphoton.2013.341
18.
C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, Science 286, 945 (1999).
http://dx.doi.org/10.1126/science.286.5441.945
19.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
20.
G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Funct. Mater. 24, 151 (2014).
http://dx.doi.org/10.1002/adfm.201302090
21.
A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Adv. Funct. Mater. 24, 3250 (2014).
http://dx.doi.org/10.1002/adfm.201304022
22.
N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, and N.-G. Park, J. Am. Chem. Soc. 137, 8696 (2015).
http://dx.doi.org/10.1021/jacs.5b04930
23.
M. Era, T. Hattori, T. Taira, and T. Tsutsui, Chem. Mater. 9, 8 (1997).
http://dx.doi.org/10.1021/cm960434m
24.
D. B. Mitzi, M. T. Prikas, and K. Chondroudis, Chem. Mater. 11, 542 (1999).
http://dx.doi.org/10.1021/cm9811139
25.
K. Chondroudis, D. B. Mitzi, and P. Brock, Chem. Mater. 12, 169 (2000).
http://dx.doi.org/10.1021/cm990516l
26.
L. K. Ono, S. Wang, Y. Kato, S. R. Raga, and Y. Qi, Energy Environ. Sci. 7, 3989 (2014).
http://dx.doi.org/10.1039/C4EE02539C
27.
Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9, 106 (2015).
http://dx.doi.org/10.1038/nphoton.2014.284
28.
H. A. Abbas, R. Kottokkaran, B. Ganapathy, M. Samiee, L. Zhang, A. Kitahara, M. Noack, and V. L. Dalal, APL Mater. 3, 016105 (2015).
http://dx.doi.org/10.1063/1.4905932
29.
D. Yang, Z. Yang, W. Qin, Y. Zhang, S. Liu, and C. Li, J. Mater. Chem. A 3, 9401 (2015).
http://dx.doi.org/10.1039/C5TA01824B
30.
S.-Y. Hsiao, H.-L. Lin, W.-H. Lee, W.-L. Tsai, K.-M. Chiang, W.-Y. Liao, C.-Z. Ren-Wu, C.-Y. Chen, and H.-W. Lin, Adv. Mater. 28, 7013 (2016).
http://dx.doi.org/10.1002/adma.201601505
31.
F. Hao, C. C. Stoumpos, Z. Liu, R. P. H. Chang, and M. G. Kanatzidis, J. Am. Chem. Soc. 136, 16411 (2014).
http://dx.doi.org/10.1021/ja509245x
32.
R. Sheng, A. Ho-Baillie, S. Huang, S. Chen, X. Wen, X. Hao, and M. A. Green, J. Phys. Chem. C 119, 3545 (2015).
http://dx.doi.org/10.1021/jp512936z
33.
P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, J. Mater. Chem. A 3, 12443 (2015).
http://dx.doi.org/10.1039/C5TA02306H
34.
S. R. Raga, L. K. Ono, and Y. Qi, J. Mater. Chem. A 4, 2494 (2016).
http://dx.doi.org/10.1039/C5TA10055K
35.
S. M. Jain, B. Philippe, E. M. J. Johansson, B.-w. Park, H. Rensmo, T. Edvinsson, and G. Boschloo, J. Mater. Chem. A 4, 2630 (2016).
http://dx.doi.org/10.1039/C5TA08745G
36.
Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, Chem. Mater. 27, 4612 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01017
37.
P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, C. Xu, and Y. Lu, J. Mater. Chem A 3, 22949 (2015).
http://dx.doi.org/10.1039/C5TA06813D
38.
M. R. Leyden, L. K. Ono, S. R. Raga, Y. Kato, S. Wang, and Y. Qi, J. Mater. Chem. A 2, 18742 (2014).
http://dx.doi.org/10.1039/C4TA04385E
39.
M. R. Leyden, M. V. Lee, S. R. Raga, and Y. Qi, J. Mater. Chem. A 3, 16097 (2015).
http://dx.doi.org/10.1039/C5TA03577E
40.
Y. Peng, G. Jing, and T. Cui, J. Mater. Chem. A 3, 12436 (2015).
http://dx.doi.org/10.1039/C5TA01730K
41.
P. Marchand, I. A. Hassan, I. P. Parkin, and C. J. Carmalt, Dalton Trans. 42, 9406 (2013).
http://dx.doi.org/10.1039/c3dt50607j
42.
S. Chen, J. Briscoe, Y. Shi, K. Chen, R. M. Wilson, S. Dunn, and R. Binions, CrystEngComm 17, 7486 (2015).
http://dx.doi.org/10.1039/C5CE01496D
43.
S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, and K. Xiao, ACS Photonics 2, 680 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00119
44.
R. G. Palgrave and I. P. Parkin, Chem. Mater. 19, 4639 (2007).
http://dx.doi.org/10.1021/cm0629006
45.
D. J. Lewis and P. O’Brien, Chem. Commun. 50, 6319 (2014).
http://dx.doi.org/10.1039/c4cc02592j
46.
D. S. Bhachu, D. O. Scanlon, E. J. Saban, H. Bronstein, I. P. Parkin, C. J. Carmalt, and R. G. Palgrave, J. Mater. Chem. A 3, 9071 (2015).
http://dx.doi.org/10.1039/C4TA05522E
47.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
48.
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1, 5628 (2013).
http://dx.doi.org/10.1039/c3ta10518k
49.
J.-P. Correa-Baena, M. Anaya, G. Lozano, W. Tress, K. Domanski, M. Saliba, T. Matsui, T. J. Jacobsson, M. E. Calvo, A. Abate, M. Grätzel, H. Míguez, and A. Hagfeldt, Adv. Mater. 28, 5031 (2016).
http://dx.doi.org/10.1002/adma.201600624
50.
G. Longo, L. Gil-Escrig, M. J. Degen, M. Sessolo, and H. J. Bolink, Chem. Commun. 51, 7376 (2015).
http://dx.doi.org/10.1039/C5CC01103E
51.
P. Pistor, J. Borchert, W. Fränzel, R. Csuk, and R. Scheer, J. Phys. Chem. Lett. 5, 3308 (2014).
http://dx.doi.org/10.1021/jz5017312
52.
T.-W. Ng, C.-Y. Chan, M.-F. Lo, Z. Q. Guan, and C.-S. Lee, J. Mater. Chem. A 3, 9081 (2015).
http://dx.doi.org/10.1039/C4TA05819D
53.
J. Borchert, H. Boht, W. Franzel, R. Csuk, R. Scheer, and P. Pistor, J. Mater. Chem. A 3, 19842 (2015).
http://dx.doi.org/10.1039/C5TA04944J
54.
J. Teuscher, A. Ulianov, O. Müntener, M. Grätzel, and N. Tétreault, ChemSusChem 8, 3847 (2015).
http://dx.doi.org/10.1002/cssc.201500972
55.
Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, and G. Cui, Angew. Chem., Int. Ed. 54, 9705 (2015).
http://dx.doi.org/10.1002/anie.201504379
56.
J. B. Patel, R. L. Milot, A. D. Wright, L. M. Herz, and M. B. Johnston, J. Phys. Chem. Lett. 7, 96 (2016).
http://dx.doi.org/10.1021/acs.jpclett.5b02495
57.
B. Yang, J. Keum, O. S. Ovchinnikova, A. Belianinov, S. Chen, M.-H. Du, I. N. Ivanov, C. M. Rouleau, D. B. Geohegan, and K. Xiao, J. Am. Chem. Soc. 138, 5028 (2016).
http://dx.doi.org/10.1021/jacs.5b13254
58.
L. Liu, J. A. McLeod, R. Wang, P. Shen, and S. Duhm, Appl. Phys. Lett. 107, 061904 (2015).
http://dx.doi.org/10.1063/1.4928662
59.
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Grätzel, Energy Environ. Sci. 9, 1989 (2016).
http://dx.doi.org/10.1039/C5EE03874J
60.
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Rothlisberger, and M. Grätzel, Energy Environ. Sci. 9, 656 (2016).
http://dx.doi.org/10.1039/C5EE03255E
61.
D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv. 2, e1501170 (2016).
http://dx.doi.org/10.1126/sciadv.1501170
62.
G.-J. A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, and H. J. Bolink, Adv. Mater. 27, 1837 (2015).
http://dx.doi.org/10.1002/adma.201405372
63.
C. Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, and H. J. Bolink, APL Mater. 2, 081504 (2014).
http://dx.doi.org/10.1063/1.4890056
64.
L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, and K. Leo, APL Mater. 2, 081503 (2014).
http://dx.doi.org/10.1063/1.4889843
65.
B.-S. Kim, T.-M. Kim, M.-S. Choi, H.-S. Shim, and J.-J. Kim, Org. Electron. 17, 102 (2015).
http://dx.doi.org/10.1016/j.orgel.2014.12.002
66.
M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao, and Z. Fan, Sci. Rep. 5, 14083 (2015).
http://dx.doi.org/10.1038/srep14083
67.
H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N. P. Padture, and G. Cui, RSC Adv. 4, 28964 (2014).
http://dx.doi.org/10.1039/C4RA03820G
68.
D. Zhao, W. Ke, C. R. Grice, A. J. Cimaroli, X. Tan, M. Yang, R. W. Collins, H. Zhang, K. Zhu, and Y. Yan, Nano Energy 19, 88 (2016).
http://dx.doi.org/10.1016/j.nanoen.2015.11.008
69.
M.-C. Jung, S. R. Raga, and Y. Qi, RSC Adv. 6, 2819 (2016).
http://dx.doi.org/10.1039/C5RA21291J
70.
T. Du, N. Wang, H. Chen, H. Lin, and H. He, ACS Appl. Mater. Interfaces 7, 3382 (2015).
http://dx.doi.org/10.1021/am508495r
71.
Y. Li, J. K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F. M. Toma, and I. D. Sharp, J. Phys. Chem. Lett. 6, 493 (2015).
http://dx.doi.org/10.1021/jz502720a
72.
C. Liu, J. Fan, X. Zhang, Y. Shen, L. Yang, and Y. Mai, ACS Appl. Mater. Interfaces 7, 9066 (2015).
http://dx.doi.org/10.1021/acsami.5b00375
73.
P. Luo, Z. Liu, W. Xia, C. Yuan, J. Cheng, and Y. Lu, ACS Appl. Mater. Interfaces 7, 2708 (2015).
http://dx.doi.org/10.1021/am5077588
74.
Y.-S. Jung, K. Hwang, F. H. Scholes, S. E. Watkins, D.-Y. Kim, and D. Vak, Sci. Rep. 6, 20357 (2016).
http://dx.doi.org/10.1038/srep20357
75.
Y. Chen, T. Chen, and L. Dai, Adv. Mater. 27, 1053 (2015).
http://dx.doi.org/10.1002/adma.201404147
76.
A. Ng, Z. Ren, Q. Shen, S. H. Cheung, H. C. Gokkaya, G. Bai, J. Wang, L. Yang, S. K. So, A. B. Djurisic, W. W.-f. Leung, J. Hao, W. K. Chan, and C. Surya, J. Mater. Chem. A 3, 9223 (2015).
http://dx.doi.org/10.1039/C4TA05070C
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4962142
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4962142
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4962142
2016-09-20
2016-12-08

Abstract

With the rapid progress in deposition techniques for hybrid organic-inorganic perovskite (HOIP) thin films, this new class of photovoltaic (PV) technology has achieved material quality and power conversion efficiency comparable to those established technologies. Among the various techniques for HOIP thin films preparation, vapor based deposition technique is considered as a promising alternative process to substitute solution spin-coating method for large-area or scale-up preparation. This technique provides some unique benefits for high-quality perovskite crystallization, which are discussed in this research update.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4962142.html;jsessionid=RrOBjZtSeNtTzhn36xBeoetB.x-aip-live-06?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4962142&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4962142&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4962142'
Top,Right1,Right2,Right3,