Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4962143
1.
NERL, Best research cell efficiencies, 2016.
2.
H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, and N. G. Park, Sci Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
3.
M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8(7), 506514 (2014).
http://dx.doi.org/10.1038/nphoton.2014.134
4.
H. Snaith and L. Schmidt-Mende, APL Mater. 2, 081201 (2014).
http://dx.doi.org/10.1063/1.4893939
5.
P. Gao, M. Grätzel, and M. K. Nazeeruddin, Energy Environ. Sci. 7(8), 24482463 (2014).
http://dx.doi.org/10.1039/C4EE00942H
6.
P. P. Boix, S. Agarwala, T. M. Koh, N. Mathews, and S. G. Mhaisalkar, J. Phys. Chem. Lett. 6(5), 898907 (2015).
http://dx.doi.org/10.1021/jz502547f
7.
H. S. Jung and N. G. Park, Small 11(1), 1025 (2015).
http://dx.doi.org/10.1002/smll.201402767
8.
C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 90199038 (2013).
http://dx.doi.org/10.1021/ic401215x
9.
Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya, and Y. Kanemitsu, Appl. Phys. Express 7(3), 032302 (2014).
http://dx.doi.org/10.7567/APEX.7.032302
10.
J. M. Ball, S. D. Stranks, M. T. Hörantner, S. Hüttner, W. Zhang, E. J. W. Crossland, I. Ramirez, M. Riede, M. B. Johnston, R. H. Friend, and H. J. Snaith, Energy Environ. Sci. 8(2), 602609 (2015).
http://dx.doi.org/10.1039/C4EE03224A
11.
J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, Energy Environ. Sci. 6(6), 17391743 (2013).
http://dx.doi.org/10.1039/c3ee40810h
12.
B. Conings, L. Baeten, T. Jacobs, R. Dera, J. D’Haen, J. Manca, and H.-G. Boyen, APL Mater. 2, 081505 (2014).
http://dx.doi.org/10.1063/1.4890245
13.
G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13, 476480 (2014).
http://dx.doi.org/10.1038/nmat3911
14.
F. Di Giacomo, A. Fakharuddin, R. Jose, and T. M. Brown, “Progress, challenges and perspectives in flexible perovskite solar cells,” Energy Environ. Sci. (to be published).
15.
J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, Nature 499(7458), 316319 (2013).
http://dx.doi.org/10.1038/nature12340
16.
T. Zhang, M. Yang, Y. Zhao, and K. Zhu, Nano Lett. 15(6), 39593963 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00843
17.
M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. Geddo Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, and G. Bongiovanni, Nat. Commun. 5, 5049 (2014).
http://dx.doi.org/10.1038/ncomms6049
18.
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grat¨zel, S. Mhaisalkar, and T. C. Sum, Science 342(6156), 344347 (2013).
http://dx.doi.org/10.1126/science.1243167
19.
S. Brittman, G. W. P. Adhyaksa, and E. C. Garnett, MRS Commun. 5(1), 726 (2015).
http://dx.doi.org/10.1557/mrc.2015.6
20.
L. Serrano-Lujan, N. Espinosa, T. T. Larsen-Olsen, J. Abad, A. Urbina, and F. C. Krebs, Adv. Energy Mater. 5(20), 1501119 (2015).
http://dx.doi.org/10.1002/aenm.201501119
21.
R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. Lett. 5(13), 23572363 (2014).
http://dx.doi.org/10.1021/jz5011187
22.
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Nat. Commun. 5, 5784 (2014).
http://dx.doi.org/10.1038/ncomms6784
23.
H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski, and W. Zhang, J. Phys. Chem. Lett. 5(9), 15111515 (2014).
http://dx.doi.org/10.1021/jz500113x
24.
F. Brivio, A. B. Walker, and A. Walsh, APL Mater. 1(4), 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
25.
B. Saparov and D. B. Mitzi, Chem. Rev. 116(7), 45584596 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00715
26.
A. Glazer, Acta Crystallogr., Sect. B 28(11), 33843392 (1972).
http://dx.doi.org/10.1107/S0567740872007976
27.
R. M. Hazen, Sci. Am. 258, 74 (1988).
http://dx.doi.org/10.1038/scientificamerican0688-74
28.
A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14(6), 36083616 (2014).
http://dx.doi.org/10.1021/nl5012992
29.
C. C. Stoumpos and M. G. Kanatzidis, Acc. Chem. Res. 48, 27912802 (2015).
http://dx.doi.org/10.1021/acs.accounts.5b00229
30.
J. M. Frost, K. T. Butler, and A. Walsh, APL Mater. 2, 081506 (2014).
http://dx.doi.org/10.1063/1.4890246
31.
J. C. Johnson, Z. Li, P. F. Ndione, and K. Zhu, J. Mater. Chem. C 4(22), 48474852 (2016).
http://dx.doi.org/10.1039/C6TC01436D
32.
B. S. Kalanoor, L. Gouda, R. Gottesman, S. Tirosh, E. Haltzi, A. Zaban, and Y. R. Tischler, ACS Photonics 3(3), 361370 (2016).
http://dx.doi.org/10.1021/acsphotonics.5b00746
33.
R. Zhang, J. Fan, X. Zhang, H. Yu, H. Zhang, Y. Mai, T. Xu, J. Wang, and H. J. Snaith, ACS Photonics 3(3), 371377 (2016).
http://dx.doi.org/10.1021/acsphotonics.5b00563
34.
M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, and N. Miura, Physica B 201, 427430 (1994).
http://dx.doi.org/10.1016/0921-4526(94)91130-4
35.
K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Solid State Commun. 127(9-10), 619623 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00566-0
36.
Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, and P. Meredith, Nat. Photonics 9(2), 106112 (2015).
http://dx.doi.org/10.1038/nphoton.2014.284
37.
E. J. Juarez-Perez, R. S. Sanchez, L. Badia, G. Garcia-Belmonte, Y. Soo Kang, I. Mora-Sero, and J. Bisquert, J. Phys. Chem. Lett. 5, 23902394 (2014).
http://dx.doi.org/10.1021/jz5011169
38.
K. Liang, D. B. Mitzi, and M. T. Prikas, Chem. Mater. 10(1), 403411 (1998).
http://dx.doi.org/10.1021/cm970568f
39.
J. H. Im, J. Chung, S. J. Kim, and N. G. Park, Nanoscale Res. Lett. 7, 114 (2012).
http://dx.doi.org/10.1186/1556-276X-7-1
40.
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, J. Mater. Chem. A 1(18), 56285641 (2013).
http://dx.doi.org/10.1039/c3ta10518k
41.
A. M. A. Leguy, J. M. Frost, A. P. McMahon, V. G. Sakai, W. Kochelmann, C. Law, X. Li, F. Foglia, A. Walsh, B. C. O’Regan, J. Nelson, J. T. Cabral, and P. R. F. Barnes, Nat. Commun. 6, 7124 (2015).
http://dx.doi.org/10.1038/ncomms8124
42.
J. Even, L. Pedesseau, and C. Katan, J. Phys. Chem. C 118(22), 1156611572 (2014).
http://dx.doi.org/10.1021/jp503337a
43.
S. Zhao, C. Lan, J. Ma, S. S. Pandey, S. Hayase, and T. Ma, Solid State Commun. 213-214, 1923 (2015).
http://dx.doi.org/10.1016/j.ssc.2015.04.012
44.
X. Zhu, H. Su, R. A. Marcus, and M. E. Michel-Beyerle, J. Phys. Chem. Lett. 5(17), 30613065 (2014).
http://dx.doi.org/10.1021/jz501174e
45.
A. Buin, R. Comin, J. Xu, A. H. Ip, and E. H. Sargent, Chem. Mater. 27(12), 44054412 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b01909
46.
M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, and M. K. Nazeeruddin, Nat. Energy 1, 15017 (2016).
http://dx.doi.org/10.1038/nenergy.2015.17
47.
H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science 345(6196), 542546 (2014).
http://dx.doi.org/10.1126/science.1254050
48.
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, Nat. Mater. 13(9), 897903 (2014).
http://dx.doi.org/10.1038/nmat4014
49.
E. Edri, S. Kirmayer, M. Kulbak, G. Hodes, and D. Cahen, J. Phys. Chem. Lett. 5(3), 429433 (2014).
http://dx.doi.org/10.1021/jz402706q
50.
C. G. Wu, C. H. Chiang, and S. H. Chang, Nanoscale 8(7), 40774085 (2016).
http://dx.doi.org/10.1039/C5NR07739G
51.
S. S. Mali, C. S. Shim, and C. K. Hong, NPG Asia Mater. 7, e208 (2015).
http://dx.doi.org/10.1038/am.2015.86
52.
G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith, J. Mater. Chem. A 3(39), 1968819695 (2015).
http://dx.doi.org/10.1039/C5TA06398A
53.
D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, Sci. Adv. 2(1), e1501170 (2016).
http://dx.doi.org/10.1126/sciadv.1501170
54.
M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Energ. Environ. Sci. 9, 19891997 (2016).
http://dx.doi.org/10.1039/C5EE03874J
55.
N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7(9), 30613068 (2014).
http://dx.doi.org/10.1039/C4EE01076K
56.
D. Li, H. Wu, H.-C. Cheng, G. Wang, Y. Huang, and X. Duan, ACS Nano 10, 6933 (2016).
http://dx.doi.org/10.1021/acsnano.6b02795
57.
C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015).
http://dx.doi.org/10.1038/ncomms8497
58.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131(17), 60506051 (2009).
http://dx.doi.org/10.1021/ja809598r
59.
J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale 3(10), 40884093 (2011).
http://dx.doi.org/10.1039/c1nr10867k
60.
M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395398 (2013).
http://dx.doi.org/10.1038/nature12509
61.
W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, Science 348(6240), 12341237 (2015).
http://dx.doi.org/10.1126/science.aaa9272
62.
N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi, and N. G. Park, J. Am. Chem. Soc. 137(27), 86968699 (2015).
http://dx.doi.org/10.1021/jacs.5b04930
63.
M. Park, J.-Y. Kim, H. J. Son, C.-H. Lee, S. S. Jang, and M. J. Ko, Nano Energy 26, 208215 (2016).
http://dx.doi.org/10.1016/j.nanoen.2016.04.060
64.
Z. G. Zhu, Y. Bai, X. Liu, C.-C. Chueh, S. Yang, and A. K. Y. Jen, Adv. Mater. 28, 64786484 (2016).
http://dx.doi.org/10.1002/adma.201600619
65.
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, Nat. Commun. 6, 7747 (2015).
http://dx.doi.org/10.1038/ncomms8747
66.
K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, Energy Environ. Sci. 7(3), 11421147 (2014).
http://dx.doi.org/10.1039/C3EE43707H
67.
T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, Nat. Commun. 4, 2885 (2013).
http://dx.doi.org/10.1038/ncomms3885
68.
J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, Energy Environ. Sci. 8(10), 29282934 (2015).
http://dx.doi.org/10.1039/C5EE02608C
69.
Q. Hu, J. Wu, C. Jiang, T. Liu, X. Que, R. Zhu, and Q. Gong, ACS Nano 8(10), 1016110167 (2014).
http://dx.doi.org/10.1021/nn5029828
70.
H. Wei, J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li, and Q. Meng, Carbon 93, 861868 (2015).
http://dx.doi.org/10.1016/j.carbon.2015.05.042
71.
Z. Wei, H. Chen, K. Yan, X. Zheng, and S. Yang, J. Mater. Chem. A 3(48), 2422624231 (2015).
http://dx.doi.org/10.1039/C5TA07714A
72.
V. Gonzalez-Pedro, E. J. Juarez-Perez, W.-S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero, and J. Bisquert, Nano Lett. 14, 888893 (2014).
http://dx.doi.org/10.1021/nl404252e
73.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338(6107), 643647 (2012).
http://dx.doi.org/10.1126/science.1228604
74.
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342(6156), 341344 (2013).
http://dx.doi.org/10.1126/science.1243982
75.
D. Liu, J. Yang, and T. L. Kelly, J. Am. Chem. Soc. 136(49), 1711617122 (2014).
http://dx.doi.org/10.1021/ja508758k
76.
B. E. Cohen, S. Gamliel, and L. Etgar, APL Mater. 2(8), 081502 (2014).
http://dx.doi.org/10.1063/1.4885548
77.
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, Science 345, 295298 (2014).
http://dx.doi.org/10.1126/science.1254763
78.
Y. Li, S. Ye, W. Sun, W. Yan, Y. Li, Z. Bian, Z. Liu, S. Wang, and C. Huang, J. Mater. Chem. A 3(36), 1838918394 (2015).
http://dx.doi.org/10.1039/C5TA05989E
79.
J. You, L. Meng, T. B. Song, T. F. Guo, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, and Y. Yang, Nat. Nanotechnol. 11(1), 7581 (2016).
http://dx.doi.org/10.1038/nnano.2015.230
80.
Q. Wali, A. Fakharuddin, I. Ahmed, M. H. Ab Rahim, J. Ismail, and R. Jose, J. Mater. Chem. A 2(41), 1742717434 (2014).
http://dx.doi.org/10.1039/C4TA03056G
81.
Q. Wali, A. Fakharuddin, and R. Jose, J. Power Sources 293, 10391052 (2015).
http://dx.doi.org/10.1016/j.jpowsour.2015.06.037
82.
Q. Wali, A. Fakharuddin, A. Yasin, M. H. Ab Rahim, J. Ismail, and R. Jose, J. Alloys Compd. 646, 3239 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.05.120
83.
J. H. Heo, D. H. Song, and S. H. Im, Adv. Mater. 26(48), 81798183 (2014).
http://dx.doi.org/10.1002/adma.201403140
84.
S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, and S. I. Seok, Energy Environ. Sci. 7(8), 26142618 (2014).
http://dx.doi.org/10.1039/C4EE00762J
85.
W. H. Nguyen, C. D. Bailie, E. L. Unger, and M. D. McGehee, J. Am. Chem. Soc. 136(31), 1099611001 (2014).
http://dx.doi.org/10.1021/ja504539w
86.
E. Edri, S. Kirmayer, D. Cahen, and G. Hodes, J. Phys. Chem. Lett. 4(6), 897902 (2013).
http://dx.doi.org/10.1021/jz400348q
87.
M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10(5), 932938 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
88.
D. Shen, X. Yu, X. Cai, M. Peng, Y. Ma, X. Su, L. Xiao, and D. Zou, J. Mater. Chem. A 2(48), 2045420461 (2014).
http://dx.doi.org/10.1039/C4TA05635C
89.
B. Conings, L. Baeten, C. De Dobbelaere, J. D’Haen, J. Manca, and H. G. Boyen, Adv. Mater. 26(13), 20412046 (2014).
http://dx.doi.org/10.1002/adma.201304803
90.
J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, and T. C. Wen, Adv. Mater. 25(27), 37273732 (2013).
http://dx.doi.org/10.1002/adma.201301327
91.
H. B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, Nanoscale 6(12), 66796683 (2014).
http://dx.doi.org/10.1039/c4nr00130c
92.
S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A. L. Palma, S. Casaluci, P. Cameron, A. D’Epifanio, S. Licoccia, A. Reale, T. M. Brown, and A. Di Carlo, J. Power Sources 277, 286 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.12.008
93.
Z. Yang, C.-C. Chueh, F. Zuo, J. H. Kim, P.-W. Liang, and A. K. Y. Jen, Adv. Energy Mater. 5(13), 1500328 (2015).
http://dx.doi.org/10.1002/aenm.201500328
94.
T. M. Schmidt, T. T. Larsen-Olsen, J. E. Carlé, D. Angmo, and F. C. Krebs, Adv. Energy Mater. 5(15), 1500569 (2015).
http://dx.doi.org/10.1002/aenm.201500569
95.
J. Troughton, C. Charbonneau, M. J. Carnie, M. L. Davies, D. A. Worsley, and T. M. Watson, J. Mater. Chem. A 3(17), 91239127 (2015).
http://dx.doi.org/10.1039/C5TA00568J
96.
J. Troughton, M. J. Carnie, M. L. Davies, C. Charbonneau, E. H. Jewell, D. A. Worsley, and T. M. Watson, J. Mater. Chem. A 4(9), 34713476 (2016).
http://dx.doi.org/10.1039/C5TA09431C
97.
G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, Adv. Func. Mater. 24(1), 151157 (2014).
http://dx.doi.org/10.1002/adfm.201302090
98.
S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca, Chem. Mater. 25(22), 46134618 (2013).
http://dx.doi.org/10.1021/cm402919x
99.
F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, and Y. Lu, Appl. Surf. Sci. 357, 391396 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.09.023
100.
J. H. Im, H. S. Kim, and N. G. Park, APL Mater. 2(8), 081510 (2014).
http://dx.doi.org/10.1063/1.4891275
101.
J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Energy Environ. Sci. 8(5), 16021608 (2015).
http://dx.doi.org/10.1039/C5EE00120J
102.
Y. Chen, Y. Zhao, and Z. Liang, Chem. Mater. 27(5), 14481451 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00041
103.
C. Zuo and L. Ding, Nanoscale 6(17), 99359938 (2014).
http://dx.doi.org/10.1039/C4NR02425G
104.
P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin, and A. K. Y. Jen, Adv. Mater. 26(22), 37483754 (2014).
http://dx.doi.org/10.1002/adma.201400231
105.
C. C. Chueh, C. Y. Liao, F. Zuo, S. T. Williams, P. W. Liang, and A. K. Y. Jen, J. Mater. Chem. A 3(17), 90589062 (2015).
http://dx.doi.org/10.1039/C4TA05012F
106.
Y. J. Jeon, S. Lee, R. Kang, J. E. Kim, J. S. Yeo, S. H. Lee, S. S. Kim, J. M. Yun, and D. Y. Kim, Sci. Rep. 4, 6953 (2014).
http://dx.doi.org/10.1038/srep06953
107.
M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y. B. Cheng, and L. Spiccia, Angew. Chem., Int. Ed. 53(37), 98989903 (2014).
http://dx.doi.org/10.1002/anie.201405334
108.
Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture, J. Mater. Chem. A 3(15), 81788184 (2015).
http://dx.doi.org/10.1039/C5TA00477B
109.
Y. Zhou, M. Yang, O. S. Game, W. Wu, J. Kwun, M. A. Strauss, Y. Yan, J. Huang, K. Zhu, and N. P. Padture, ACS Appl. Mater. Interfaces 8(3), 22322237 (2016).
http://dx.doi.org/10.1021/acsami.5b10987
110.
F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt, and M. Graetzel, Nat. Commun. 7, 10379 (2016).
http://dx.doi.org/10.1038/ncomms10379
111.
N. Yantara, D. Sabba, F. Yanan, J. M. Kadro, T. Moehl, P. P. Boix, S. Mhaisalkar, M. Grätzel, and C. Grätzel, Chem. Commun. 51(22), 46034606 (2015).
http://dx.doi.org/10.1039/C4CC09556A
112.
K. Hwang, Y. S. Jung, Y. J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D. Y. Kim, and D. Vak, Adv. Mater. 27(7), 12411247 (2015).
http://dx.doi.org/10.1002/adma.201404598
113.
C. Yi, X. Li, J. Luo, S. M. Zakeeruddin, and M. Grätzel, Adv. Mater. 28(15), 29642970 (2016).
http://dx.doi.org/10.1002/adma.201506049
114.
A. Fakharuddin, A. L. Palma, F. D. Giacomo, S. Casaluci, F. Matteocci, Q. Wali, M. Rauf, A. D. Carlo, T. M. Brown, and R. Jose, Nanotechnology 26(49), 494002 (2015).
http://dx.doi.org/10.1088/0957-4484/26/49/494002
115.
Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, Adv. Mater. 26, 6503 (2014).
http://dx.doi.org/10.1002/adma.201401685
116.
T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza, and H. J. Snaith, Adv. Energy Mater. 5(20), 1500963 (2015).
http://dx.doi.org/10.1002/aenm.201500963
117.
T. A. Berhe, W. N. Su, C. H. Chen, C. J. Pan, J. H. Cheng, H. M. Chen, M. C. Tsai, L. Y. Chen, A. A. Dubale, and B. J. Hwang, Energy Environ. Sci. 9(2), 323356 (2016).
http://dx.doi.org/10.1039/C5EE02733K
118.
J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, and N.-G. Park, Adv. Energy Mater. 5(20), 1501310 (2015).
http://dx.doi.org/10.1002/aenm.201501310
119.
C. Manspeaker, P. Scruggs, J. Preiss, D. A. Lyashenko, and A. A. Zakhidov, J. Phys. Chem. C 120(12), 63776382 (2016).
http://dx.doi.org/10.1021/acs.jpcc.6b00364
120.
H. Chen, Y. Hou, C. E. Halbig, S. Chen, H. Zhang, N. Li, F. Guo, X. Tang, N. Gasparini, I. Levchuk, S. Kahmann, C. O. Ramirez Quiroz, A. Osvet, S. Eigler, and C. J. Brabec, J. Mater. Chem. A 4, 11604 (2016).
http://dx.doi.org/10.1039/c6ta03755k
121.
L. Zheng, Y. H. Chung, Y. Ma, L. Zhang, L. Xiao, Z. Chen, S. Wang, B. Qu, and Q. Gong, Chem. Commun. 50(76), 1119611199 (2014).
http://dx.doi.org/10.1039/C4CC04680C
122.
K. Wojciechowski, T. Leijtens, S. Spirova, C. Schlueter, M. Hoerantner, J. T.-W. Wang, C.-Z. Li, A. K.-Y. Jen, T.-L. Lee, and H. J. Snaith, J. Phys. Chem. Lett. 6, 23992405 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00902
123.
A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, and P. R. F. Barnes, Chem. Mater. 27(9), 33973407 (2015).
http://dx.doi.org/10.1021/acs.chemmater.5b00660
124.
F. Matsumoto, S. M. Vorpahl, J. Q. Banks, E. Sengupta, and D. S. Ginger, J. Phys. Chem. C 119(36), 2081020816 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b06269
125.
N. A. Manshor, Q. Wali, K. K. Wong, S. K. Muzakir, A. Fakharuddin, L. Schmidt-Mende, and R. Jose, Phys. Chem. Chem. Phys. 18, 21629 (2016).
http://dx.doi.org/10.1039/c6cp03600g
126.
S. Guarnera, A. Abate, W. Zhang, J. M. Foster, G. Richardson, A. Petrozza, and H. J. Snaith, J. Phys. Chem. Lett. 6(3), 432437 (2015).
http://dx.doi.org/10.1021/jz502703p
127.
X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, and N. Yuan, J. Mater. Chem. A 3(10), 53605367 (2015).
http://dx.doi.org/10.1039/C4TA06128D
128.
S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas, and H. J. Snaith, Nano Lett. 14(10), 55615568 (2014).
http://dx.doi.org/10.1021/nl501982b
129.
A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T. M. Brown, and R. Jose, J. Power Sources 283, 6167 (2015).
http://dx.doi.org/10.1016/j.jpowsour.2015.02.084
130.
A. Fakharuddin, F. Di Giacomo, A. L. Palma, F. Matteocci, I. Ahmed, S. Razza, A. D’Epifanio, S. Licoccia, J. Ismail, A. Di Carlo, T. M. Brown, and R. Jose, ACS Nano 9(8), 84208429 (2015).
http://dx.doi.org/10.1021/acsnano.5b03265
131.
I. Ahmed, A. Fakharuddin, Q. Wali, A. R. B. Zainun, J. Ismail, and R. Jose, Nanotechnology 26(10), 105401 (2015).
http://dx.doi.org/10.1088/0957-4484/26/10/105401
132.
X. Li, M. Tschumi, H. Han, S. S. Babkair, R. A. Alzubaydi, A. A. Ansari, S. S. Habib, M. K. Nazeeruddin, S. M. Zakeeruddin, and M. Grätzel, Energy Technol. 3, 551555 (2015).
http://dx.doi.org/10.1002/ente.201500045
133.
D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant, and S. A. Haque, Energy Environ. Sci. 9(5), 16551660 (2016).
http://dx.doi.org/10.1039/C6EE00409A
134.
N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S. A. Haque, Angew. Chem., Int. Ed. 54, 82088212 (2015).
http://dx.doi.org/10.1002/anie.201503153
135.
E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforod, and M. D. McGehee, Energy Environ. Sci. 7, 36903698 (2014).
http://dx.doi.org/10.1039/C4EE02465F
136.
J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, and D. Yu, J. Phys. Chem. Lett. 5, 39373945 (2014).
http://dx.doi.org/10.1021/jz502111u
137.
H.-W. Chen, N. Sakai, M. Ikegami, and T. Miyasaka, J. Phys. Chem. Lett. 6, 164169 (2015).
http://dx.doi.org/10.1021/jz502429u
138.
A. Dualeh, T. Moehl, N. Tétreault, J. Teuscher, P. Gao, M. K. Nazeeruddin, and M. Grätzel, ACS Nano 8, 362373 (2014).
http://dx.doi.org/10.1021/nn404323g
139.
Y. Yang, J. Xiao, H. Wei, L. Zhu, D. Li, Y. Luo, H. Wu, and Q. Meng, RSC Adv. 4(95), 5282552830 (2014).
http://dx.doi.org/10.1039/C4RA09519G
140.
O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, and G. Garcia-Belmonte, J. Phys. Chem. Lett. 6, 16451652 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00480
141.
B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu, and S. Priya, J. Phys. Chem. Lett. 6, 46934700 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b02229
142.
B. Chen, M. Yang, S. Priya, and K. Zhu, J. Phys. Chem. Lett. 7(5), 905917 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b00215
143.
K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend, A. K.-Y. Jen, and H. J. Snaith, ACS Nano 8, 1270112709 (2014).
http://dx.doi.org/10.1021/nn505723h
144.
J. W. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, and S. I. Seok, Energy Environ. Sci. 7, 26422646 (2014).
http://dx.doi.org/10.1039/C4EE01216J
145.
M. Grätzel, Nat. Mater. 13, 838842 (2014).
http://dx.doi.org/10.1038/nmat4065
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4962143
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4962143
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4962143
2016-09-06
2016-12-06

Abstract

Perovskite solar cells (PSCs) marked tremendous progress in a short period of time and offer bright hopes for cheap solar electricity. Despite high power conversion efficiency >20%, its poor operational stability as well as involvement of toxic, volatile, and less-abundant materials hinders its practical deployment. The fact that degradation and toxicity are typically observed in the most successful perovskite involving organic cation and toxic lead, i.e., CHNHPbX, requires a deep understanding of their role in photovoltaic performance in order to envisage if a non-toxic, stable yet highly efficient device is feasible. Towards this, we first provide an overview of the basic chemistry and physics of halide perovskites and its correlation with its extraordinary properties such as crystal structure, bandgap, ferroelectricity, and electronic transport. We then discuss device related aspects such as the various device designs in PSCs and role of interfaces in origin of PV parameters particularly open circuit voltage, various film processing methods and their effect on morphology and characteristics of perovskite films, and the origin and elimination of hysteresis and operational stability in these devices. We then identify future perspectives for stable and efficient PSCs for practical deployment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4962143.html;jsessionid=KPiPb3Z15_c9sLdzMkY2Jeky.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4962143&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4962143&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4962143'
Top,Right1,Right2,Right3,