Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4962145
1.
K. J. Yang, J. H. Sim, D. H. Son, D. W. Kim, G. Y. Kim, W. Jo, S. Song, J. H. Kim, D. Nam, H. Cheong, and J. K. Kang, Prog. Photovoltaics 23, 17711784 (2015).
http://dx.doi.org/10.1002/pip.2619
2.
K. J. Yang, D. H. Son, S. J. Sung, J. H. Sim, Y. I. Kim, S. N. Park, D. H. Jeon, J. S. Kim, D. K. Hwang, C. W. Jeon, D. Nam, H. Cheong, J. K. Kang, and D. H. Kim, J. Mater. Chem. A 4, 1015110158 (2016).
http://dx.doi.org/10.1039/C6TA01558A
3.
W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, Adv. Energy Mater 4, 1301465 (2013).
http://dx.doi.org/10.1002/aenm.201301465
4.
B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Prog. Photovoltaics 21, 7276 (2013).
http://dx.doi.org/10.1002/pip.1174
5.
Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, Y. Virgus, and S. Guha, Adv. Energy Mater. 12, 14013721401374 (2015).
http://dx.doi.org/10.1002/aenm.201401372
6.
P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9, 2831 (2014).
http://dx.doi.org/10.1002/pssr.201409520
7.
T. Nakada, Y. Hirabayashi, and T. Tokado, Jpn. J. Appl. Phys., Part 2 41, L1209L1211 (2002).
http://dx.doi.org/10.1143/JJAP.41.L1209
8.
T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori, and T. Mise, Sol. Energy 77, 739-747 (2004).
http://dx.doi.org/10.1016/j.solener.2004.08.010
9.
S. H. Moon, S. J. Park, Y. J. Hwang, D. K. Lee, Y. Cho, D. W. Kim, and B. K. Min, Sci. Rep. 4(4408), 16 (2014).
http://dx.doi.org/10.1038/srep04408
10.
J. Ge, J. Chu, J. Jiang, Y. Yan, and P. Yang, ACS Appl. Mater. Interfaces 6, 2111821130 (2014).
http://dx.doi.org/10.1021/am505980n
11.
J. Ge, J. Chu, J. Jiang, Y. Yan, and P. Yang, ACS Sustainable Chem. Eng. 3, 30433052 (2015).
http://dx.doi.org/10.1021/acssuschemeng.5b00962
12.
S. S. Mali, B. M. Patil, C. A. Betty, P. N. Bhosale, Y. W. Oh, S. R. Jadkar, R. S. Devan, Y. R. Ma, and P. S. Patil, Electrochim. Acta 66, 216221 (2012).
http://dx.doi.org/10.1016/j.electacta.2012.01.079
13.
J. Ge, J. Chu, Y. Yan, J. Jiang, and P. Yang, ACS Appl. Mater. Interfaces 7, 1041410428 (2015).
http://dx.doi.org/10.1021/acsami.5b01641
14.
J. H. Yoon, J. Song, and S. J. Lee, Sol. Energy 85, 723733 (2011).
http://dx.doi.org/10.1016/j.solener.2010.12.026
15.
K. N. Tu, Mater. Chem. Phys. 46, 217223 (1996).
http://dx.doi.org/10.1016/S0254-0584(97)80016-8
16.
L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. R. Deline, S. Ahmed, L. T. Romankiw, and H. Deligianni, Prog. Photovoltaics 22, 5868 (2014).
http://dx.doi.org/10.1002/pip.2332
17.
C. M. Fella, A. R. Uhl, C. Hammond, I. Hermans, Y. E. Romanyuk, and A. N. Tiwari, J. Alloys Compd. 567, 102106 (2013).
http://dx.doi.org/10.1016/j.jallcom.2013.03.056
18.
G. Frank and H. Köstlin, Appl. Phys. A 27, 197206 (1982).
http://dx.doi.org/10.1007/BF00619080
19.
A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Placidi, D. Sylla, M. Espindola-Rodriguez, S. López-Mariño, F. A. Pulgarín, O. Vigil-Galán, A. Pérez-Rodríguez, and E. Saucedo, Prog. Photovoltaics 22, 479487 (2014).
http://dx.doi.org/10.1002/pip.2473
20.
I. V. Dudchak and L. V. Piskach, J. Alloys Compd. 351, 145150 (2003).
http://dx.doi.org/10.1016/S0925-8388(02)01024-1
21.
O. Gunawan, T. Gokmen, and D. B. Mitzi, J. Appl. Phys. 116, 084504 (2014).
http://dx.doi.org/10.1063/1.4893315
22.
M. Green, A. W. Blakers, J. Zhaos, A. M. Milne, A. Wang, and X. Dai, IEEE Trans. Electron Devices 37, 331336 (1990).
http://dx.doi.org/10.1109/16.46361
23.
S. López-Marino, M. Placidi, A. Pérez-Tomás, J. Llobet, V. Izquierdo-Roca, X. Fontané, A. Fairbrother, M. Espindola-Rodríguez, D. Sylla, A. Pérez-Rodríguez, and E. Saucedo, J. Mater. Chem. 1, 83388343 (2013).
http://dx.doi.org/10.1039/c3ta11419h
24.
H. Cui, Z. Liu, F. Liu, X. Hao, N. Song, and C. Yan, Appl. Phys. Lett. 104, 041115 (2014).
http://dx.doi.org/10.1063/1.4863951
25.
F. Zeng, K. Sun, L. Gong, L. Jiang, F. Liu, Y. Lai, and J. Li, Phys. Status Solidi RRL 9(12), 687691 (2015).
http://dx.doi.org/10.1002/pssr.201510280
26.
X. Liu, H. Cui, C. Kong, X. Hao, Y. Huang, F. Liu, N. Song, G. Conibeer, and M. Green, Appl. Phys. Lett. 16, 131110 (2015).
http://dx.doi.org/10.1063/1.4916994
27.
B. Shin, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, Appl. Phys. Lett. 101, 053903 (2012).
http://dx.doi.org/10.1063/1.4740276
28.
F. Liu, K. Sun, W. Li, C. Yan, H. Cui, L. Jiang, X. Hao, and M. Green, Appl. Phys. Lett. 104, 051105 (2014).
http://dx.doi.org/10.1063/1.4863736
29.
Y. Liu, D.-Y. Kong, H. You, C.-L. Chen, X.-H. Lin, and J. Brugger, J. Mater. Sci. Mater. Electron 24, 529535 (2013).
http://dx.doi.org/10.1007/s10854-012-0970-8
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4962145
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4962145
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4962145
2016-09-01
2016-12-11

Abstract

In this work, transparent conducting oxides (TCOs) have been employed as a back contact instead of Mo on CuZnSnSe (CZTSe) thin-film solar cells in order to examine the feasibility of bifacial CuZnSn(S,Se) (CZTSSe) solar cells based on a vacuum process. It is found that the interfacial reaction between flourine doped tin oxide (FTO) or indium tin oxide (ITO) and the CZTSe precursor is at odds with the conventional CZTSe/Mo reaction. While there is no interfacial reaction on CZTSe/FTO, indium in CZTSe/ITO was significantly diffused into the CZTSe layers; consequently, a SnO layer was formed on the ITO substrate. Under bifacial illumination, we achieved a power efficiency of 6.05% and 4.31% for CZTSe/FTO and CZTSe/ITO, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4962145.html;jsessionid=SDic6Gsk60JX-1-aAgNTViVa.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4962145&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4962145&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4962145'
Top,Right1,Right2,Right3,