Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4962146
1.
A. Dhar and T. L. Alford, APL Mater. 1, 012102 (2013).
http://dx.doi.org/10.1063/1.4808438
2.
M. Z. Wei, L. J. Xu, J. Shi, G. J. Pan, Z. H. Cao, and X. K. Meng, Appl. Phys. Lett. 106, 011604 (2015).
http://dx.doi.org/10.1063/1.4905552
3.
Q. Zhou, J. Y. Xie, F. Wang, P. Huang, K. W. Xu, and T. J. Lu, Acta Mech. Sin. 31, 319 (2015).
http://dx.doi.org/10.1007/s10409-015-0401-1
4.
R. G. Hoagland, R. J. Kurtz, and C. H. Henager, Jr., Scr. Mater. 50, 775 (2004).
http://dx.doi.org/10.1016/j.scriptamat.2003.11.059
5.
A. Misra, J. P. Hirth, and R. G. Hoagland, Acta Mater. 53, 4817 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.06.025
6.
Q. Zhou, J. J. Li, F. Wang, P. Huang, K. W. Xu, and T. J. Lu, Scr. Mater. 111, 123 (2016).
http://dx.doi.org/10.1016/j.scriptamat.2015.08.031
7.
Q. Zhou, J. Zhao, J. Y. Xie, F. Wang, P. Huang, T. J. Lu, and K. W. Xu, Mater. Sci. Eng., Proc. Conf. 608, 184 (2014).
http://dx.doi.org/10.1016/j.msea.2014.04.080
8.
M. Pelliccione and T. M. Lu, Evolution of Thin-Film Morphology (Springer, 2008).
9.
B. Fu, W. An, C. H. Turner, and G. B. Thompson, Phys. Rev. Lett. 105, 096101 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.096101
10.
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
11.
J. Cai and Y. Y. Ye, Phys. Rev. B 54, 8398 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.8398
12.
T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.1302
13.
B. Dünweg and W. Paul, Int. J. Mod. Phys. C 2, 817 (1991).
http://dx.doi.org/10.1142/S0129183191001037
14.
A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).
http://dx.doi.org/10.1088/0965-0393/18/1/015012
15.
J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987).
http://dx.doi.org/10.1021/j100303a014
16.
Y. Liu, Y. Chen, K. Y. Yu, H. Wang, J. Chen, and X. Zhang, Int. J. Plast. 49, 152 (2013).
http://dx.doi.org/10.1016/j.ijplas.2013.03.005
17.
V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50, 5005 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00318-X
18.
X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 5062 (2003).
http://dx.doi.org/10.1063/1.1633975
19.
B. Q. Li, M. L. Sui, B. Li, E. Ma, and S. X. Mao, Phys. Rev. Lett. 102, 205504 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.205504
20.
Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci. 57, 1 (2012).
http://dx.doi.org/10.1016/j.pmatsci.2011.05.001
21.
J. J. Niu, P. Zhang, R. H. Wang, J. Y. Zhang, G. Liu, G. J. Zhang, and J. Sun, Mater. Sci. Eng. A 539, 68 (2012).
http://dx.doi.org/10.1016/j.msea.2012.01.046
22.
J. Y. Zhang, Y. Q. Wang, K. Wu, P. Zhang, G. Liu, G. J. Zhang, and J. Sun, Mater. Sci. Eng. A 612, 28 (2014).
http://dx.doi.org/10.1016/j.msea.2014.06.025
23.
X. L. Wu and Y. T. Zhu, Phys. Rev. Lett. 101, 025503 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.025503
24.
J. Y. Zhang, P. Zhang, R. H. Wang, G. Liu, G. J. Zhang, and J. Sun, Mater. Sci. Eng. A 554, 116 (2012).
http://dx.doi.org/10.1016/j.msea.2012.06.023
25.
S. K. Yadav, S. Shao, J. Wang, and X. Y. Liu, Sci. Rep. 5, 17380 (2015).
http://dx.doi.org/10.1038/srep17380
26.
X. Y. Zhu, X. J. Liu, R. L. Zong, F. Zeng, and F. Pan, Mater. Sci. Eng. A 527, 1243 (2010).
http://dx.doi.org/10.1016/j.msea.2009.09.058
27.
Y. P. Li, G. P. Zhang, W. Wang, J. Tan, and S. J. Zhu, Scr. Mater. 57, 117 (2007).
http://dx.doi.org/10.1016/j.scriptamat.2007.03.032
28.
S. P. Wen, R. L. Zong, F. Zeng, Y. Gao, and F. Pan, J. Mater. Res. 22, 3423 (2007).
http://dx.doi.org/10.1557/JMR.2007.0423
29.
H. Geisler, K. O. Schweitz, J. Chevallier, J. Bttiger, and K. Samwer, Philos. Mag. A 79, 485 (1999).
http://dx.doi.org/10.1080/01418619908210311
30.
S. P. Baker and W. D. Nix, J. Mater. Res. 9, 3131 (1994).
http://dx.doi.org/10.1557/JMR.1994.3131
31.
D. Bufford, Z. Bi, Q. X. Jia, H. Wang, and X. Zhang, Appl. Phys. Lett. 101, 223112 (2012).
http://dx.doi.org/10.1063/1.4768000
32.
S. P. Wen, F. Zeng, Y. Gao, and F. Pan, Surf. Coat. Technol. 201, 1262 (2006).
http://dx.doi.org/10.1016/j.surfcoat.2006.01.044
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4962146
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4962146
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4962146
2016-09-01
2016-09-26

Abstract

We present unusual high hardness (up to 7.7 GPa) achieved in Cu/Al multilayers relative to monolithic Cu and Al films (∼2 GPa and ∼1 GPa, respectively). Nanotwins and stacking faults (SFs) were proposed to be the main contributors of hardness enhancement, especially when < 5 nm. Using molecular dynamics simulations of deposition, we demonstrated that intermixing near Cu/Al interface was paramount in stabilizing the SFs in both Cu and Al layers. Our experimental results indicated that the high strength caused by layer intermixing was in sharp contrast to the general belief that only sharp interface structures could strengthen the multilayers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4962146.html;jsessionid=xO-b2ulP44PEc3QXwAMXzMhg.x-aip-live-03?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4962146&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4962146&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4962146'
Top,Right1,Right2,Right3,