Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/aplmater/4/9/10.1063/1.4962351
1.
D. B. Mitzi and N. Lewis, in Progress in Inorganic Chemistry, edited by K. D. Karlin (John Wiley & Sons, Inc., 1994), pp. 1121.
2.
G. Kieslich, S. Sun, and T. Cheetham, Chem. Sci. 6, 3430 (2015).
http://dx.doi.org/10.1039/C5SC00961H
3.
M. R. Filip, G. E. Eperon, H. J. Snaith, and F. Giustino, Nat. Commun. 5, 5757 (2014).
http://dx.doi.org/10.1038/ncomms6757
4.
M. A. Green, A. Ho-Baillie, and H. J. Snaith, Nat. Photonics 8, 506 (2014).
http://dx.doi.org/10.1038/nphoton.2014.134
5.
Z. Cheng and J. Lin, CrystEngComm 12, 2646 (2010).
http://dx.doi.org/10.1039/c001929a
6.
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
7.
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
8.
H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, Sci. Rep. 2, 591 (2012).
http://dx.doi.org/10.1038/srep00591
9.
M. Era, S. Morimoto, T. Tsutsui, and S. Saito, Appl. Phys. Lett. 65, 676 (1994).
http://dx.doi.org/10.1063/1.112265
10.
Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol. 9, 1 (2014).
http://dx.doi.org/10.1038/nnano.2013.308
11.
F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, and R. H. Friend, J. Phys. Chem. Lett. 5, 1 (2014).
http://dx.doi.org/10.1021/jz5005285
12.
S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, Phys. Rev. Appl. 2, 034007 (2014).
http://dx.doi.org/10.1103/PhysRevApplied.2.034007
13.
M. B. Johnston and L. M. Herz, Acc. Chem. Res. 49, 146 (2015).
http://dx.doi.org/10.1021/acs.accounts.5b00411
14.
S. Pathak, A. Sepe, A. Sadhanala, F. Deschler, A. Haghighirad, N. Sakai, K. C. Goedel, S. D. Stranks, N. Noel, M. Price, S. Hu, N. A. Hawkins, R. H. Friend, U. Steiner, and H. J. Snaith, ACS Nano 9, 2311 (2015).
http://dx.doi.org/10.1021/nn506465n
15.
J. M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J. Rivett, L. Pazos-Outon, K. Goedel, M. Price, F. Deschler, and R. H. Friend, “Effect of photon recycling on external photoluminescence quantum yields in lead-halide perovskites” (submitted).
16.
A. Sadhanala, F. Deschler, T. H. Thomas, S. E. Dutton, K. C. Goedel, F. C. Hanusch, M. L. Lai, U. Steiner, T. Bein, P. Docampo, D. Cahen, and R. H. Friend, J. Phys. Chem. Lett. 5, 2501 (2014).
http://dx.doi.org/10.1021/jz501332v
17.
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, and M. V. Kovalenko, Nano Lett. 15, 3692 (2015).
http://dx.doi.org/10.1021/nl5048779
18.
E. T. Hoke, D. J. Slotcavage, E. R. Dohner, A. R. Bowring, H. I. Karunadasa, and M. D. McGehee, Chem. Sci. 6, 613 (2015).
http://dx.doi.org/10.1039/C4SC03141E
19.
G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent, and M. V. Kovalenko, Nano Lett. 15, 5635 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02404
20.
H. Cho, S.-H. Jeong, M.-H. Park, Y.-H. Kim, C. Wolf, C.-L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, and T.-W. Lee, Science 350, 1222 (2015).
http://dx.doi.org/10.1126/science.aad1818
21.
M. Yuan, L. N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E. M. Beauregard, P. Kanjanaboos, Z. Lu, D. H. Kim, and E. H. Sargent, “Perovskite energy funnels for efficient light-emitting diodes,” Nat. Nanotechnol. (published online).
22.
P. Pust, P. J. Schmidt, and W. Schnick, Nature Materials 14, 454 (2015).
http://dx.doi.org/10.1038/nmat4270
23.
O. A. Jaramillo-Quintero, R. S. Sanchez, M. Rincon, and I. Mora-Sero, J. Phys. Chem. Lett. 6, 1883 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00732
24.
A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P. M. Pearce, F. Deschler, R. L. Z. Hoye, K. C. Goedel, T. Bein, P. Docampo, S. E. Dutton, M. F. L. De Volder, and R. H. Friend, Nano Lett. 15, 6095 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02369
25.
N. Z. Koocher, D. Saldana-Greco, F. Wang, S. Liu, and A. M. Rappe, J. Phys. Chem. Lett. 6, 4371 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01797
26.
J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, and W. Huang, Adv. Mater. 27, 2311 (2015).
http://dx.doi.org/10.1002/adma.201405217
27.
R. L. Z. Hoye, M. R. Chua, K. P. Musselman, G. Li, M. L. Lai, Z. K. Tan, N. C. Greenham, J. L. MacManus-Driscoll, R. H. Friend, and D. Credgington, Adv. Mater. 27, 1414 (2015).
http://dx.doi.org/10.1002/adma.201405044
28.
J. Byun, H. Cho, C. Wolf, M. Jang, A. Sadhanala, R. H. Friend, H. Yang, and T.-W. Lee, Adv. Mater. 28, 7515 (2016).
http://dx.doi.org/10.1002/adma.201601369
29.
Z. Yuan, Y. Shu, Y. Xin, and B. Ma, Chem. Commun. 52, 3887 (2016).
http://dx.doi.org/10.1039/C5CC09762B
30.
J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv. Mater. 27, 7161 (2015).
http://dx.doi.org/10.1002/adma.201570302
31.
N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir, and S. Mhaisalkar, J. Phys. Chem. Lett. 6, 4360 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b02011
32.
M. L. Lai, T. Y. S. Tay, A. Sadhanala, S. E. Dutton, G. Li, R. H. Friend, and Z.-K. Tan, J. Phys. Chem. Lett. 7, 2653 (2016).
http://dx.doi.org/10.1021/acs.jpclett.6b01047
33.
W.-L. Hong, Y.-C. Huang, C.-Y. Chang, Z.-C. Zhang, H.-R. Tsai, N.-Y. Chang, and Y.-C. Chao, “Efficient Low-Temperature Solution-Processed Lead-Free Perovskite Infrared Light-Emitting Diodes,” Adv. Mater. (published online).
http://dx.doi.org/10.1002/adma.201601024
34.
H. Doyle and T. A. Betley, IBM J. Res. Dev. 45, 47 (2001).
http://dx.doi.org/10.1147/rd.451.0047
35.
W. Nie, H. Tsai, R. Asadpour, J. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. Wang, and A. D. Mohite, Science 347, 522 (2015).
http://dx.doi.org/10.1126/science.aaa0472
36.
J. C. Yu, D. W. Kim, D. Bin Kim, E. D. Jung, J. H. Park, A.-Y. Lee, B. R. Lee, D. Di Nuzzo, R. H. Friend, and M. H. Song, Adv. Mater. 28, 6906 (2016).
http://dx.doi.org/10.1002/adma.201601105
37.
J. C. Yu, D. Bin Kim, E. D. Jung, B. R. Lee, and M. H. Song, Nanoscale 8, 7036 (2016).
http://dx.doi.org/10.1039/C5NR05604G
38.
L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H. J. Bolink, R. E. Galian, and J. Pérez-Prieto, J. Am. Chem. Soc. 136, 850 (2014).
http://dx.doi.org/10.1021/ja4109209
39.
W. Deng, X. Xu, X. Zhang, Y. Zhang, X. Jin, L. Wang, S.-T. Lee, and J. Jie, Adv. Funct. Mater. 26, 4797 (2016).
http://dx.doi.org/10.1002/adfm.201601054
40.
G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Peña, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham, and Z. K. Tan, Adv. Mater. 28, 3528 (2016).
http://dx.doi.org/10.1002/adma.201600064
41.
F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, ACS Nano 9, 4533 (2015).
http://dx.doi.org/10.1021/acsnano.5b01154
42.
S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, and D. Pan, Chem. Commun. 52, 7265 (2016).
http://dx.doi.org/10.1039/C6CC01500J
43.
S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, ACS Nano 10, 3648 (2016).
http://dx.doi.org/10.1021/acsnano.5b08193
44.
T. C. Jellicoe, J. M. Richter, H. F. J. Glass, M. Tabachnyk, R. Brady, S. E. Dutton, A. Rao, R. H. Friend, D. Credgington, N. C. Greenham, and M. L. Böhm, J. Am. Chem. Soc. 138, 2941 (2016).
http://dx.doi.org/10.1021/jacs.5b13470
45.
S. Aharon and L. Etgar, Nano Lett. 16, 3230 (2016).
http://dx.doi.org/10.1021/acs.nanolett.6b00665
46.
Y. Hassan, Y. Song, R. D. Pensack, A. I. Abdelrahman, Y. Kobayashi, M. A. Winnik, and G. D. Scholes, Adv. Mater. 28, 566 (2016).
http://dx.doi.org/10.1002/adma.201503461
47.
L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, and E. H. Sargent, J. Am. Chem. Soc. 138, 2649 (2016).
http://dx.doi.org/10.1021/jacs.5b11740
48.
A. B. Wong, M. Lai, S. W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, and P. Yang, Nano Lett. 15, 5519 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02082
49.
Y. Bekenstein, B. A. Koscher, S. W. Eaton, P. Yang, and A. P. Alivisatos, J. Am. Chem. Soc. 137, 16008 (2015).
http://dx.doi.org/10.1021/jacs.5b11199
50.
D. Zhang, S. W. Eaton, Y. Yu, L. Dou, and P. Yang, J. Am. Chem. Soc. 137, 9230 (2015).
http://dx.doi.org/10.1021/jacs.5b05404
51.
S. Bhaumik, S. Veldhuis, Y. F. Ng, M. Li, S. K. Muduli, T. C. Sum, B. Damodaran, S. G. Mhaisalkar, and N. Mathews, Chem. Commun. 7, 2 (2016).
http://dx.doi.org/10.1039/C6MD90002J
52.
J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska, R. Garcia Cortadella, B. Nickel, C. Cardenas-Daw, J. K. Stolarczyk, A. S. Urban, and J. Feldmann, Nano Lett. 15, 6521 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02985
53.
J. C. Yu, D. Bin Kim, G. Baek, B. R. Lee, E. D. Jung, S. Lee, J. H. Chu, D.-K. Lee, K. J. Choi, S. Cho, and M. H. Song, Adv. Mater. 27, 3492 (2015).
http://dx.doi.org/10.1002/adma.201500465
54.
N. K. Kumawat, A. Dey, A. Kumar, S. P. Gopinathan, K. L. Narasimhan, and D. Kabra, ACS Appl. Mater. Interfaces 7, 13119 (2015).
http://dx.doi.org/10.1021/acsami.5b02159
55.
Y. H. Kim, H. Cho, J. H. Heo, T. S. Kim, N. S. Myoung, C. L. Lee, S. H. Im, and T. W. Lee, Adv. Mater. 27, 1248 (2015).
http://dx.doi.org/10.1002/adma.201403751
56.
N. Wang, L. Cheng, J. Si, X. Liang, Y. Jin, J. Wang, and W. Huang, Appl. Phys. Lett. 108, 141102 (2016).
http://dx.doi.org/10.1063/1.4945330
57.
N. K. Kumawat, A. Dey, K. L. Narasimhan, and D. Kabra, ACS Photonics 2, 349 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00018
58.
X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang, and X. W. Sun, Adv. Funct. Mater. 26, 4595 (2016).
http://dx.doi.org/10.1002/adfm.201600958
59.
X. Qin, H. Dong, and W. Hu, Sci. China Mater. 58, 186 (2015).
http://dx.doi.org/10.1007/s40843-015-0035-4
60.
Y. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, and H. Gao, Adv. Mater. 28, 305 (2016).
http://dx.doi.org/10.1002/adma.201503954
61.
G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. W. Lim, R. H. Friend, and N. C. Greenham, Nano Lett. 15, 2640 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00235
62.
X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy, and A. L. Rogach, Nano Lett. 16, 1415 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b04959
63.
L. Gil-Escrig, A. Miquel-Sempere, M. Sessolo, and H. J. Bolink, J. Phys. Chem. Lett. 6, 3743 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01716
64.
L. Gil-Escrig, G. Longo, A. Pertegás, C. Roldán-Carmona, A. Soriano, M. Sessolo, and H. J. Bolink, Chem. Commun. 51, 569 (2015).
http://dx.doi.org/10.1039/C4CC07518H
65.
A. Genco, F. Mariano, S. Carallo, V. L. P. Guerra, S. Gambino, D. Simeone, A. Listorti, S. Colella, G. Gigli, and M. Mazzeo, Adv. Electron. Mater. 2, 1500325 (2016).
http://dx.doi.org/10.1002/aelm.201500325
66.
J. Xing, F. Yan, Y. Zhao, S. Chen, H. Yu, Q. Zhang, R. Zeng, H. V. Demir, X. Sun, A. Huan, and Q. Xiong, ACS Nano 10, 6623 (2016).
http://dx.doi.org/10.1021/acsnano.6b01540
67.
S.-T. Ha, C. Shen, J. Zhang, and Q. Xiong, Nat. Photonics 10, 115121 (2016).
http://dx.doi.org/10.1038/nphoton.2015.243
68.
L. M. Pazos-Outon, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H. J. Beeson, M. Vru ini, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, and F. Deschler, Science 351, 1430 (2016).
http://dx.doi.org/10.1126/science.aaf1168
69.
M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999).
http://dx.doi.org/10.1063/1.124588
70.
Y. Sun and S. R. Forrest, Nat. Photonics 2, 483 (2008).
http://dx.doi.org/10.1038/nphoton.2008.132
71.
W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, and H. Takezoe, Nat. Photonics 4, 222 (2010).
http://dx.doi.org/10.1038/nphoton.2010.7
72.
Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira, and E. H. Sargent, ACS Appl. Mater. Interfaces 7, 25007 (2015).
http://dx.doi.org/10.1021/acsami.5b09084
73.
Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulović, Nat. Photonics 7, 13 (2013).
http://dx.doi.org/10.1038/nphoton.2012.328
74.
M. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
75.
N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. Il Seok, Nat. Mater. 13, 897 (2014).
http://dx.doi.org/10.1038/nmat4014
76.
J. H. Heo, D. H. Song, and S. H. Im, Adv. Mater. 26, 8179 (2014).
http://dx.doi.org/10.1002/adma.201403140
77.
S. G. R. Bade, J. Li, X. Shan, Y. Ling, Y. Tian, T. Dilbeck, T. Besara, T. Geske, H. Gao, B. Ma, K. Hanson, T. Siegrist, C. Xu, and Z. Yu, ACS Nano 10, 1795 (2016).
http://dx.doi.org/10.1021/acsnano.5b07506
78.
B. Saparov and D. B. Mitzi, Chem. Rev. 116, 4558 (2016).
http://dx.doi.org/10.1021/acs.chemrev.5b00715
79.
D. Liang, Y. Peng, Y. Fu, M. J. Shearer, J. Zhang, J. Zhai, Y. Zhang, R. J. Hamers, T. L. Andrew, and S. Jin, ACS Nano 10, 6897 (2016).
http://dx.doi.org/10.1021/acsnano.6b02683
80.
J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko, and Z. Hens, ACS Nano 10, 2071 (2016).
http://dx.doi.org/10.1021/acsnano.5b06295
81.
F. Palazon, Q. A. Akkerman, M. Prato, and L. Manna, ACS Nano 10, 1224 (2016).
http://dx.doi.org/10.1021/acsnano.5b06536
82.
G. G. Malliaras and J. C. Scott, J. Appl. Phys. 83, 5399 (1998).
http://dx.doi.org/10.1063/1.367369
83.
J. Huang, G. Li, E. Wu, Q. Xu, and Y. Yang, Adv. Mater. 18, 114 (2006).
http://dx.doi.org/10.1002/adma.200501105
84.
B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nat. Photonics 7, 407 (2013).
http://dx.doi.org/10.1038/nphoton.2013.70
85.
Y. Zhou, C. Fuentes-hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
http://dx.doi.org/10.1126/science.1218829
86.
M. B. Price, J. Butkus, T. C. Jellicoe, A. Sadhanala, A. Briane, J. E. Halpert, K. Broch, J. M. Hodgkiss, R. H. Friend, and F. Deschler, Nat. Commun. 6, 8420 (2015).
http://dx.doi.org/10.1038/ncomms9420
87.
J. Liu, Y. Xue, Z. Wang, Z.-Q. Xu, C. Zheng, B. Weber, J. Song, Y. Wang, Y. Lu, Y. Zhang, and Q. Bao, ACS Nano 10, 3536 (2016).
http://dx.doi.org/10.1021/acsnano.5b07791
88.
G. P. Nagabhushana, R. Shivaramaiah, and A. Navrotsky, Proc. Natl. Acad. Sci. 113, 7717 (2016).
http://dx.doi.org/10.1073/pnas.1607850113
89.
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature 515, 96 (2014).
http://dx.doi.org/10.1038/nature13829
90.
Y. Wei, J. S. Lauret, L. Galmiche, P. Audebert, and E. Deleporte, Opt. Express 20, 10399 (2012).
http://dx.doi.org/10.1364/OE.20.010399
91.
G. Lanty, A. Bréhier, R. Parashkov, J. S. Lauret, and E. Deleporte, New J. Phys. 10, 065007 (2008).
http://dx.doi.org/10.1088/1367-2630/10/6/065007
92.
F. Brivio, K. T. Butler, A. Walsh, and M. van Schilfgaarde, Phys. Rev. B 89, 1 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.155204
93.
P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 (2014).
http://dx.doi.org/10.1038/srep04467
94.
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, and R. J. Nicholas, Nat. Phys. 11, 582 (2015).
http://dx.doi.org/10.1038/nphys3357
95.
L. M. Herz, Annu. Rev. Phys. Chem. 67, 65 (2016).
http://dx.doi.org/10.1146/annurev-physchem-040215-112222
96.
R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston, and L. M. Herz, Adv. Funct. Mater. 25, 6218 (2015).
http://dx.doi.org/10.1002/adfm.201502340
97.
N. Chand, E. E. Becker, J. P. Van Der Ziel, S. N. G. Chu, and N. K. Dutta, Appl. Phys. Lett. 58, 1704 (1991).
http://dx.doi.org/10.1063/1.105114
98.
G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, and T. C. Sum, Nat. Mater. 13, 476 (2014).
http://dx.doi.org/10.1038/nmat3911
99.
B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, and E. H. Sargent, ACS Nano 8, 10947 (2014).
http://dx.doi.org/10.1021/nn504856g
100.
K. Zheng, Q. Zhu, M. Abdellah, M. E. Messing, W. Zhang, A. Generalov, Y. Niu, L. Ribaud, S. E. Canton, and T. Pullerits, J. Phys. Chem. Lett. 6, 2969 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b01252
101.
Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, Nano Lett. 14, 5995 (2014).
http://dx.doi.org/10.1021/nl503057g
102.
S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, and P. Yang, Proc. Natl. Acad. Sci. 113, 1993 (2016).
http://dx.doi.org/10.1073/pnas.1600789113
103.
R. Dhanker, A. N. Brigeman, A. V. Larsen, R. J. Stewart, J. B. Asbury, and N. C. Giebink, Appl. Phys. Lett. 105, 151112 (2014).
http://dx.doi.org/10.1063/1.4898703
104.
S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, and M. V. Kovalenko, Nat. Commun. 6, 8056 (2015).
http://dx.doi.org/10.1038/ncomms9056
105.
M. Saliba, S. M. Wood, J. B. Patel, P. K. Nayak, J. Huang, J. A. Alexander-Webber, B. Wenger, S. D. Stranks, M. T. Hoerantner, J. T. W. Wang, R. J. Nicholas, L. M. Herz, M. B. Johnston, S. M. Morris, H. J. Snaith, and M. K. Riede, Adv. Mater. 28, 923 (2016).
http://dx.doi.org/10.1002/adma.201502608
106.
S. Chen, K. Roh, J. Lee, W. K. Chong, Y. Lu, N. Mathews, T. C. Sum, and A. Nurmikko, ACS Nano 10, 3959 (2016).
http://dx.doi.org/10.1021/acsnano.5b08153
107.
M. Cadelano, V. Sarritzu, N. Sestu, D. Marongiu, F. Chen, R. Piras, R. Corpino, C. M. Carbonaro, F. Quochi, M. Saba, A. Mura, and G. Bongiovanni, Adv. Opt. Mater 3, 1557 (2015).
http://dx.doi.org/10.1002/adom.201500229
108.
X. Qian, X. Gu, and R. Yang, Appl. Phys. Lett. 108, 063902 (2016).
http://dx.doi.org/10.1063/1.4941921
109.
T. S. Kao, Y. Chou, C. Chou, F. Chen, T. Lu, T. S. Kao, Y. Chou, C. Chou, and F. Chen, Appl. Phys. Lett. 105, 231108 (2014).
http://dx.doi.org/10.1063/1.4903877
110.
W. K. Chong, K. Thirumal, D. Giovanni, T. W. Goh, X. Liu, N. Mathews, S. G. Mhaisalkar, and T. C. Sum, Phys. Chem. Chem. Phys. 18, 14701 (2016).
http://dx.doi.org/10.1039/C6CP01955B
111.
H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V Gustafsson, M. T. Trinh, S. Jin, and X.-Y. Zhu, Nat. Mater. 14, 636 (2015).
http://dx.doi.org/10.1038/nmat4271
http://aip.metastore.ingenta.com/content/aip/journal/aplmater/4/9/10.1063/1.4962351
Loading
/content/aip/journal/aplmater/4/9/10.1063/1.4962351
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/aplmater/4/9/10.1063/1.4962351
2016-09-16
2016-12-11

Abstract

Hybrid lead-halide perovskites have emerged as promising solution-processed semiconductor materials for thin-film optoelectronics. In this review, we discuss current challenges in perovskite LED performance, using thin-film and nano-crystalline perovskite as emitter layers, and look at device performance and stability. Fabrication of electrically pumped, optical-feedback devices with hybrid lead halide perovskites as gain medium is a future challenge, initiated by the demonstration of optically pumped lasing structures with low gain thresholds. We explain the material parameters affecting optical gain in perovskites and discuss the challenges towards electrically pumped perovskite lasers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/aplmater/4/9/1.4962351.html;jsessionid=1yjhEnQd_tauVWv7JhreAMyD.x-aip-live-02?itemId=/content/aip/journal/aplmater/4/9/10.1063/1.4962351&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/aplmater
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=APLMaterials.aip.org/4/9/10.1063/1.4962351&pageURL=http://scitation.aip.org/content/aip/journal/aplmater/4/9/10.1063/1.4962351'
Top,Right1,Right2,Right3,