Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, San Diego, 1985).
2.A. Szoke, V. Daneu, J. Goldhar, and N. A. Kurnit, “Bistable optical element and its applications,” Appl. Phys. Lett. 15, 376 (1969).
3.E. Abraham and S. D. Smith, “Optical bistability and related devices,” Rep. Prog. Phys. 45, 815 (1982).
4.E. Bernabeu, P. M. Mejas, and R. Martnez-Herrer, “Optical bistability: Towards all-optical devices,” Phys. Scr. 36, 312 (1987).
5.R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479482 (1964).
6.J. E. Bjorkholm, A. E. Kaplan, P. W. Smith, and W. J. Tomlinson, “Optical bistability based on self-focusing,” Opt. Lett. 6, 345347 (1981).
7.I. C. Khoo, J. Y. Hou, T. H. Liu, P. Y. Yan, R. R. Michael, and G. M. Finn, “Transverse self-phase modulation and bistability in the transmission of a laser beam through a nonlinear thin film,” J. Opt. Soc. Am. B 4, 886891 (1987).
8.J. E. Bjorkholm and A. A. Ashkin, “cw self-focusing and self-trapping of light in sodium vapor,” Phys. Rev. Lett. 32, 129132 (1974).
9.Y. S. Kivshar and G. P. Agrawal, Optical Solitons (Academic Press, San Diego, CA, 2003).
10.S. Skupin, O. Bang, and W. Krolikowski, “Nonlocal solitons,” in Nonlinear Optics (Optical Society of America, 2011), p. NTuA1
11.D. J. Mitchell and A. W. Snyder, “Soliton dynamics in a nonlocal medium,” J. Opt. Soc. Am. B 16, 236 (1999).
12.A. W. Snyder and D. J. Mitchell, “Accessible solitons,” Science 276, 1538 (1997).
13.M. Segev and G. Stegeman, “Self-trapping of optical beams: Spatial solitons,” Phys. Today 51(8), 4248 (1998).
14.G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: Universality and diversity,” Science 286, 15181523 (1999).
15.A. E. Kaplan, “Bistable solitons,” Phys. Rev. Lett. 55, 12911294 (1985).
16.N. Kravets, A. Piccardi, A. Alberucci, O. Buchnev, M. Kaczmarek, and G. Assanto, “Bistability with optical beams propagating in a reorientational medium,” Phys. Rev. Lett. 113, 023901 (2014).
17.A. Alberucci, A. Piccardi, N. Kravets, and G. Assanto, “Beam hysteresis via reorientational self-focusing,” Opt. Lett. 39, 58305833 (2014).
18.A. Alberucci, A. Piccardi, N. Kravets, O. Buchnev, and G. Assanto, “Soliton enhancement of spontaneous symmetry breaking,” Optica 2, 783789 (2015).
19.P. G. DeGennes and J. Prost, The Physics of Liquid Crystals (Oxford Science, New York, 1993).
20.I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
21.M. Peccianti, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 79 (2000).
22.G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39, 1321 (2003).
23.M. Peccianti and G. Assanto, “Nematicons,” Phys. Rep. 516, 147208 (2012).
24.A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, and G. Assanto, “Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity,” Phys. Rev. A 82, 023806 (2010).
25.G. Assanto, A. Fratalocchi, and M. Peccianti, “Spatial solitons in nematic liquid crystals: From bulk to discrete,” Opt. Express 15, 52485259 (2007).
26.G. Assanto and M. Karpierz, “Nematicons: Self-localized beams in nematic liquid crystals,” Liq. Cryst. 36, 1161 (2009).
27.S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-field-induced birefringence and Fréedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett. 47, 14111414 (1981).
28.E. Braun, L. P. Faucheux, and A. Libchaber, “Strong self-focusing in nematic liquid crystals,” Phys. Rev. A 48, 611622 (1993).
29.I. C. Khoo, T. H. Liu, and P. Y. Yan, “Nonlocal radial dependence of laser-induced molecular reorientation in a nematic liquid crystal: Theory and experiment,” J. Opt. Soc. Am. B 4, 115120 (1987).
30.A. Alberucci, N. Kravets, A. Piccardi, O. Buchnev, M. Kaczmarek, and G. Assanto, “Nematicons in planar cells subject to the optical fréedericksz threshold,” Opt. Express 22, 3066330668 (2014).
31.M. Peccianti, C. Conti, and G. Assanto, “The interplay between non locality and nonlinearity in nematic liquid crystals,” Opt. Lett. 30, 415 (2005).
32.A. Piccardi, M. Peccianti, G. Assanto, A. Dyadyusha, and M. Kaczmarek, “Voltage-driven in-plane steering of nematicons,” Appl. Phys. Lett. 94, 091106 (2009).
33.M. Warenghem, J. Blach, and J. F. Henninot, “Thermo-nematicon: An unnatural coexistence of solitons in liquid crystals?,” J. Opt. Soc. Am. B 25, 18821887 (2008).
34.H. L. Ong, “Optically induced Fréedericksz transition and bistability in a nematic liquid crystal,” Phys. Rev. A 28, 23932407 (1983).

Data & Media loading...


We report on voltage controlled bistability of optical beams propagating in a nonlocal reorientational uniaxial dielectric, namely, nematic liquid crystals. In the nonlinear regime where spatial solitons can be generated, two stable states are accessible to a beam of given power in a finite interval of applied voltages, one state corresponding to linear diffraction and the other to self-confinement. We observe such a first-order transition and the associated hysteresis in a configuration when both the beam and the voltage reorientate the molecules beyond a threshold.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd