Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
T. Hänsch and A. L. Schawlow, Opt. Commun. 13, 68 (1975).
T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
K. C. Neuman and A. Nagy, Nat. Meth. 5, 491 (2008).
L. P. Ghislain, N. A. Switz, and W. W. Webb, Rev. Sci. Instrum. 65, 2762 (1994).
O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).
A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, Nanoscale 6, 4458 (2014).
A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, ACS Nano 9, 3453 (2015).
S. Lal, S. Link, and N. J. Halas, Nat. Photonics 1, 641 (2007).
J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
F. Hajizadeh and S. S.Reihani, Opt. Express 18, 551 (2010).
A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, Phys. Rev. Lett. 108, 018101 (2012).
A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A 18, 839 (2001).
M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophotonics 2, 021875 (2008).
A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 110, 1223 (2009).
S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006).
T. B. Lindballe, M. V. G. Kristensen, K. Berg-Sørensen, S. R. Keiding, and H. Stapelfeldt, Opt. Express 21, 1986 (2013).
N. Villadsen, D. Ø. Andreasen, J. Hagelskjær, J. Thøgersen, A. Imparato, and S. R. Keiding, Opt. Express 23, 13141 (2015).
M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens et al., New J. Phys. 12, 113056 (2010).
D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, Opt. Express 20, 29679 (2012).
O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, Nano Lett. 8, 3211 (2008).
A. Rohrbach, Opt. Express 13, 9695 (2005).
See supplementary material at for a derivation of Equation(3), the results of optical heating simulations for the particle surface temperature, and details on the error bar calculation for Figure4 and the theoretical scattering force calculation.[Supplementary Material]
G. Falasco, M. V. Gnann, D. Rings, and K. Kroy, Phys. Rev. E 90 (2014).
R. Parthasarathy, Nat. Meth. 9, 724 (2012).
M. Toshimitsu, Y. Matsumura, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, A. Nobuhiro et al., J. Phys. Chem. C 116, 14610 (2012).
M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Phys. Rev. Lett. 78, 2192 (1997).
M. Hu and G. V. Hartland, J. Phys. Chem. B 106, 7029 (2002).
M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmüller, and J. Feldmann, ACS Nano 7, 7648 (2013).
G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
W. P. Wong and K. Halvorsen, Opt. Express 14, 12517 (2006).
Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance, available online under (02/2016) (2008).
M. Mansuripur, Opt. Express 12, 5375 (2004).
J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
S. Babar and J. H. Weaver, Appl. Opt. 54, 477 (2015).
R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B 86, 235147 (2012).
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoener, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A: Pure Appl. Opt. 9, S196 (2007).

Data & Media loading...


Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd