Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/2/10.1063/1.4945351
1.
T. Hänsch and A. L. Schawlow, Opt. Commun. 13, 68 (1975).
http://dx.doi.org/10.1016/0030-4018(75)90159-5
2.
T. J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008).
http://dx.doi.org/10.1126/science.1156032
3.
K. C. Neuman and A. Nagy, Nat. Meth. 5, 491 (2008).
http://dx.doi.org/10.1038/nmeth.1218
4.
L. P. Ghislain, N. A. Switz, and W. W. Webb, Rev. Sci. Instrum. 65, 2762 (1994).
http://dx.doi.org/10.1063/1.1144613
5.
O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013).
http://dx.doi.org/10.1038/nnano.2013.208
6.
A. S. Urban, S. Carretero-Palacios, A. A. Lutich, T. Lohmüller, J. Feldmann, and F. Jäckel, Nanoscale 6, 4458 (2014).
http://dx.doi.org/10.1039/c3nr06617g
7.
A. Lehmuskero, P. Johansson, H. Rubinsztein-Dunlop, L. Tong, and M. Käll, ACS Nano 9, 3453 (2015).
http://dx.doi.org/10.1021/acsnano.5b00286
8.
S. Lal, S. Link, and N. J. Halas, Nat. Photonics 1, 641 (2007).
http://dx.doi.org/10.1038/nphoton.2007.223
9.
J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, Annu. Rev. Biochem. 77, 205 (2008).
http://dx.doi.org/10.1146/annurev.biochem.77.043007.090225
10.
K. Svoboda and S. M. Block, Opt. Lett. 19, 930 (1994).
http://dx.doi.org/10.1364/ol.19.000930
11.
P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, Nano Lett. 5, 1937 (2005).
http://dx.doi.org/10.1021/nl051289r
12.
F. Hajizadeh and S. S.Reihani, Opt. Express 18, 551 (2010).
http://dx.doi.org/10.1364/oe.18.000551
13.
A. Ohlinger, A. Deak, A. A. Lutich, and J. Feldmann, Phys. Rev. Lett. 108, 018101 (2012).
http://dx.doi.org/10.1103/physrevlett.108.018101
14.
A. Rohrbach and E. H. K. Stelzer, J. Opt. Soc. Am. A 18, 839 (2001).
http://dx.doi.org/10.1364/josaa.18.000839
15.
M. Dienerowitz, M. Mazilu, and K. Dholakia, J. Nanophotonics 2, 021875 (2008).
http://dx.doi.org/10.1117/1.2992045
16.
A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
http://dx.doi.org/10.1103/physrevlett.24.156
17.
G. Gouesbet, J. Quant. Spectrosc. Radiat. Transfer 110, 1223 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.01.020
18.
S. Eustis and M. A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006).
http://dx.doi.org/10.1039/b514191e
19.
T. B. Lindballe, M. V. G. Kristensen, K. Berg-Sørensen, S. R. Keiding, and H. Stapelfeldt, Opt. Express 21, 1986 (2013).
http://dx.doi.org/10.1364/OE.21.001986
20.
N. Villadsen, D. Ø. Andreasen, J. Hagelskjær, J. Thøgersen, A. Imparato, and S. R. Keiding, Opt. Express 23, 13141 (2015).
http://dx.doi.org/10.1364/OE.23.013141
21.
M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens et al., New J. Phys. 12, 113056 (2010).
http://dx.doi.org/10.1088/1367-2630/12/11/113056
22.
D. B. Phillips, G. M. Gibson, R. Bowman, M. J. Padgett, S. Hanna, D. M. Carberry, M. J. Miles, and S. H. Simpson, Opt. Express 20, 29679 (2012).
http://dx.doi.org/10.1364/oe.20.029679
23.
O. M. Marago, P. H. Jones, F. Bonaccorso, V. Scardaci, P. G. Gucciardi, A. G. Rozhin, and A. C. Ferrari, Nano Lett. 8, 3211 (2008).
http://dx.doi.org/10.1021/nl8015413
24.
A. Rohrbach, Opt. Express 13, 9695 (2005).
http://dx.doi.org/10.1364/opex.13.009695
25.
See supplementary material at http://dx.doi.org/10.1063/1.4945351 for a derivation of Equation(3), the results of optical heating simulations for the particle surface temperature, and details on the error bar calculation for Figure4 and the theoretical scattering force calculation.[Supplementary Material]
26.
G. Falasco, M. V. Gnann, D. Rings, and K. Kroy, Phys. Rev. E 90 (2014).
http://dx.doi.org/10.1103/physreve.90.032131
27.
R. Parthasarathy, Nat. Meth. 9, 724 (2012).
http://dx.doi.org/10.1038/nmeth.2071
28.
M. Toshimitsu, Y. Matsumura, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, H. Yamauchi, S. Ito, H. Miyasaka, A. Nobuhiro et al., J. Phys. Chem. C 116, 14610 (2012).
http://dx.doi.org/10.1021/jp305247a
29.
M. Perner, P. Bost, U. Lemmer, G. von Plessen, J. Feldmann, U. Becker, M. Mennig, M. Schmitt, and H. Schmidt, Phys. Rev. Lett. 78, 2192 (1997).
http://dx.doi.org/10.1103/physrevlett.78.2192
30.
M. Hu and G. V. Hartland, J. Phys. Chem. B 106, 7029 (2002).
http://dx.doi.org/10.1021/jp020581+
31.
M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmüller, and J. Feldmann, ACS Nano 7, 7648 (2013).
http://dx.doi.org/10.1021/nn402124p
32.
G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
http://dx.doi.org/10.1103/physrev.36.823
33.
K. Berg-Sørensen and H. Flyvbjerg, Rev. Sci. Instrum. 75, 594 (2004).
http://dx.doi.org/10.1063/1.1645654
34.
W. P. Wong and K. Halvorsen, Opt. Express 14, 12517 (2006).
http://dx.doi.org/10.1364/oe.14.012517
35.
Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance, available online under http://www.viscopedia.com/viscosity-tables (02/2016) (2008).
36.
M. Mansuripur, Opt. Express 12, 5375 (2004).
http://dx.doi.org/10.1364/opex.12.005375
37.
J. P. Barton, D. R. Alexander, and S. A. Schaub, J. Appl. Phys. 66, 4594 (1989).
http://dx.doi.org/10.1063/1.343813
38.
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
39.
S. Babar and J. H. Weaver, Appl. Opt. 54, 477 (2015).
http://dx.doi.org/10.1364/ao.54.000477
40.
R. L. Olmon, B. Slovick, T. W. Johnson, D. Shelton, S.-H. Oh, G. D. Boreman, and M. B. Raschke, Phys. Rev. B 86, 235147 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235147
41.
T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knoener, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
http://dx.doi.org/10.1088/1464-4258/9/8/s12
http://aip.metastore.ingenta.com/content/aip/journal/app/1/2/10.1063/1.4945351
Loading
/content/aip/journal/app/1/2/10.1063/1.4945351
Loading

Data & Media loading...

Abstract

Optomechanical manipulation of plasmonic nanoparticles is an area of current interest, both fundamental and applied. However, no experimental method is available to determine the forward-directed scattering force that dominates for incident light of a wavelength close to the plasmon resonance. Here, we demonstrate how the scattering force acting on a single gold nanoparticle in solution can be measured. An optically trapped 80 nm particle was repetitively pushed from the side with laser light resonant to the particle plasmon frequency. A lock-in analysis of the particle movement provides a measured value for the scattering force. We obtain a resolution of less than 3 femtonewtons which is an order of magnitude smaller than any measurement of switchable forces performed on nanoparticles in solution with single beam optical tweezers to date. We compared the results of the force measurement with Mie simulations of the optical scattering force on a gold nanoparticle and found good agreement between experiment and theory within a few fN.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/2/1.4945351.html;jsessionid=IldxcpZakuLhy6bTSN6UP0QD.x-aip-live-06?itemId=/content/aip/journal/app/1/2/10.1063/1.4945351&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/2/10.1063/1.4945351&pageURL=http://scitation.aip.org/content/aip/journal/app/1/2/10.1063/1.4945351'
Right1,Right2,Right3,