Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
E. Zavoisky, J. Phys. (USSR) 9, 245 (1945).
C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, J. Phys. Chem. B 109, 11414 (2005).
C. Caspers, M. Müller, A. X. Gray, A. M. Kaiser, A. Gloskovskii, C. S. Fadley, W. Drube, and C. M. Schneider, Phys. Status Solidi RRL 5, 441 (2011).
A. M. Kolpak and S. Ismail-Beigi, Phys. Rev. B 85, 195318 (2012).
R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, M. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, Phys. Rev. Lett. 109, 127207 (2012).
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
J.-S. Lee, Bull. Am. Phys. Soc. 60, 020113 (2015), see
I. P. Bykov, M. D. Glinchuk, V. V. Laguta, A. M. Slipenyuk, S. M. Korniyenko, L. Soukup, L. Jastrabik, and A. Dejneka, Ferroelectrics 239, 349 (2000).
S. Gallego, J. I. Beltran, J. Cerda, and M. C. Munoz, J. Phys.: Condens. Matter 17, L451 (2005).
C. Gionco, E. Giamello, L. Mino, and M. C. Paganini, Phys. Chem. Chem. Phys. 16, 21438 (2014).
J. Rocker, D. Cornu, E. Kieseritzky, A. Seiler, O. Bondarchuk, W. Hänsel-Ziegler, T. Risse, and H.-J. Freund, Rev. Sci. Instrum. 85, 083903 (2014).
L.-B. Xiong, J.-L. Li, B. Yang, and Y. Yu, J. Nanomater. 2012, 13.
N. C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C. E. Matt, J. Chang, M. Schulte, J. Braun, H. Ebert, J. Minár, B. Delley, K.-J. Zhou, T. Schmitt, M. Shi, J. Mesot, L. Patthey, and M. Radović, Phys. Rev. Lett. 113, 086801 (2014).
A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Roedel, M. Del, G. Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Nat. Mater. 13, 1085 (2014).
W. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. Crooker, Nat. Mater. 13, 481 (2014).
S. Crooker, Bull. Am. Phys. Soc. 60, 020056 (2015), see
M. Che, J. F. J. Kibblewhite, A. J. Tench, M. Dufaux, and C. Naccache, J. Chem. Soc., Faraday Trans. 1 69, 857 (1973).
S. Ackermann, L. Sauvin, R. Castiglioni, J. L. M. Rupp, J. R. Scheffe, and A. Steinfeld, J. Phys. Chem. C 119, 16452 (2015).
F. Caputo, M. De Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia, E. Traversa, and L. Ghibelli, Nanoscale 7, 15643 (2015).
V. Kharton, F. Figueiredo, L. Navarro, E. Naumovich, A. Kovalevsky, A. Yaremchenko, A. Viskup, A. Carneiro, F. Marques, and J. Frade, J. Mater. Sci. 36, 1105 (2001).
A. Aboukais, E. A. Zhilinskaya, J.-F. Lamonier, and I. N. Filimonov, Colloids Surf., A 260, 199 (2005).
P. Lakshmanan, F. Averseng, N. Bion, L. Delannoy, J.-M. Tatibout, and C. Louis, Gold Bull. 46, 233 (2013).
M. D. Hernández-Alonso, A. B. Hungría, A. Martínez-Arias, M. Fernández-García, J. M. Coronado, J. C. Conesa, and J. Soria, Appl. Catal., B 50, 167 (2004).
H. A. Al-Madfa, M. M. Khader, and M. A. Morris, Int. J. Chem. Kinet. 36, 293 (2004).
N. Kumari, N. Sinha, M. Haider, and S. Basu, Electrochim. Acta 177, 21 (2015).
S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, Opt. Mater. Express 4, 1244 (2014).
D. M. Murphy and M. Chiesa, Electron Paramagnetic Resonance (The Royal Society of Chemistry, 2008), Vol. 21, pp. 105130.
Y. S. Lebedev, High-Frequency Continuous-Wave Electron Spin Resonance (Wiley, New York, 1990), pp. 365404.
W. B. Lynch, K. A. Earle, and J. H. Freed, Rev. Sci. Instrum. 59, 1345 (1988).
G. Eaton and S. Eaton, Appl. Magn. Reson. 16, 161 (1999).
J. H. Freed, Ann. Rev. Phys. Chem. 51, 655 (2000).
M. Bennati and T. F. Prisner, Rep. Prog. Phys. 68, 411 (2005).
O. Grinberg and L. Berliner, Very High Frequency (VHF) ESR/EPR, Biological Magnetic Resonance (Springer, USA, 2013).
K. A. Earle, J. H. Freed, and D. E. Budil, Advances in Magnetic and Optical Resonance (Academic Press, 1996), pp. 253323.
K. A. Earle, D. S. Tipikin, and J. H. Freed, Rev. Sci. Instrum. 67, 2502 (1996).
D. Schmalbein, G. Maresch, A. Kamlowski, and P. Höfer, Appl. Magn. Reson. 16, 185 (1999).
B. Náfrádi, R. Gaál, A. Sienkiewicz, T. Fehér, and L. Forró, J. Magn. Reson. 195, 206 (2008).
A. Savitsky and K. Möbius, Photosynth. Res. 102, 311 (2009).
K. L. Nagy, D. Quintavalle, T. Fehér, and A. Jánossy, Appl. Magn. Reson. 40, 47 (2011).
J. Yan, L. Barnett, C. Domier, and N. C. Luhmann, Proc. SPIE 8496, 84960D (2012).
A. Hassan, A. Maniero, H. van Tol, C. Saylor, and L.-C. Brunel, Appl. Magn. Reson. 16, 299 (1999).
S. Takahashi, D. G. Allen, J. Seifter, G. Ramian, M. S. Sherwin, L.-C. Brunel, and J. van Tol, in 4th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator-Based Sources [Infrared Phys. Technol. 51, 426 (2008)].
S. Takahashi, L.-C. Brunel, D. T. Edwards, J. van Tol, G. Ramian, S. Han, and M. S. Sherwin, Nature 489, 409 (2012).
S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, Rev. Sci. Instrum. 80, 073102 (2009).
J. van Tol, L.-C. Brunel, and R. J. Wylde, Rev. Sci. Instrum. 76, 074101 (2005).
I. Gromov and P. Höfer, in Euromar 2013, EPR Division, Bruker Biospin GmbH, Rheinstetten, Germany.
B. D. Armstrong, D. T. Edwards, R. J. Wylde, S. A. Walker, and S. Han, Phys. Chem. Chem. Phys. 12, 5920 (2010).
D. Martin and E. Puplett, Infrared Phys. 10, 105 (1970).
Thorlabs, Inc., 60 mm cage system optic mounts, 2015, copyright 1999-2015 Thorlabs, Inc.
D. Martin, R. Wylde, and R. Wylde, IEEE Trans. Microwave Theory Tech. 57, 99 (2009).
D. T. Chuss, S. H. Moseley, G. Novak, and E. J. Wollack, Proc. SPIE 5492, 1487 (2004).
Virginia Diodes, Inc.,, sub-THz transmitter, part No Tx-237, 2015.
S. Alberti, J.-P. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-P. Hogge, A. Macor, E. de Rijk, M. da Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).
E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, Rev. Sci. Instrum. 82, 066102 (2011).
P. Ade, A. Costley, C. Cunningham, C. Mok, G. Neill, and T. Parker, Infrared Phys. 19, 599 (1979).
See supplementary material at for further characterizations of the new 260 GHz Martin-Puplett high-field ESR spectrometer and a deeper understanding of the quasioptical setup and the operation, Martin-Puplett ESR spectrometer mobility and versatility.[Supplementary Material]
S. Alberti, F. Braunmueller, T. M. Tran, J. Genoud, J.-P. Hogge, M. Q. Tran, and J.-P. Ansermet, Phys. Rev. Lett. 111, 205101 (2013).
J.-P. Hogge, F. Braunmueller, S. Alberti, J. Genoud, T. Tran, Q. Vuillemin, M. Tran, J.-P. Ansermet, P. Cuanillon, A. Macor, E. de Rijk, and P. Saraiva, Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2013).
J. Krzystek, A. Sienkiewicz, L. Pardi, and L. Brunel, J. Magn. Reson. 125, 207 (1997).
L. Lumata, M. Merritt, C. Khemtong, S. J. Ratnakar, J. van Tol, L. Yu, L. Song, and Z. Kovacs, RSC Adv. 2, 12812 (2012).
J. H. O. Barbosa, J. A. G. Luna, A. M. O. Kinoshita, and O. Baffa Filho, Cienc. Agrotecnol. 37, 495 (2013).
S. Kolaczkowski, J. Cardin, and D. Budil, Appl. Magn. Reson. 16, 293 (1999).
A. Abragam, “Electron-nucleus interactions,” in The Principles of Nuclear Magnetism (Clarendon Press, 1983), Chap. VI, p. 191ff.
S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).
S. Stoll, in Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part A, Methods in Enzymology Vol. 563, edited by P. Z. Qin and K. Warncke (Academic Press, 2015), pp. 121142.
R. W. Holmberg, “A paramagnetic resonance study of hyperfine interactions in single-crystals containing α,α-diphenyl-β picrylhydrazil,” J. Chem. Phys. 33, 541 (1960).
H. D. Wijn and J. Henning, Physica 28, 592 (1962).
R. J. Gorte, AIChE J. 56, 1126 (2010).
S.-F. Wang, C.-T. Yeh, Y.-R. Wang, and Y.-C. Wu, J. Mater. Res. Technol. 2, 141 (2013).
A. Sienkiewicz, “On high-field ESR spectra of Sm-CeO2,” private communication (2015).
C. Caspers, 260 GHz high field ESR spectra of Sm-doped CeO2, measurements reports at LPMN, 2016.
D. Hui-Ning, Z. Wen-Chen, W. Shao-Yi, and T. Sheng, Spectrochim. Acta, Part A 60, 489 (2004).
L. Lumata, S. J. Ratnakar, A. Jindal, M. Merritt, A. Comment, C. Malloy, A. D. Sherry, and Z. Kovacs, Chem. - Eur. J. 17, 10825 (2011).
T. V. Can, M. A. Caporini, F. Mentink-Vigier, B. Corzilius, J. J. Walish, M. Rosay, W. E. Maas, M. Baldus, S. Vega, T. M. Swager, and R. G. Griffin, J. Chem. Phys. 141, 064202 (2014).
L. Becerra, G. Gerfen, B. Bellew, J. Bryant, D. Hall, S. Inati, R. Weber, S. Un, T. Prisner, A. McDermott, K. Fishbein, K. Kreischer, R. Temkin, D. Singel, and R. Griffin, J. Magn. Reson., Ser. A 117, 28 (1995).
Swissto12 SA,, terahertz applications, 2015.

Data & Media loading...


260-GHz radiation is used for a quasi-optical electron spin resonance (ESR) spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH) using field modulation. Original high-field ESR of 4 electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd