Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/2/10.1063/1.4945450
1.
E. Zavoisky, J. Phys. (USSR) 9, 245 (1945).
2.
C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, J. Phys. Chem. B 109, 11414 (2005).
http://dx.doi.org/10.1021/jp051756t
3.
C. Caspers, M. Müller, A. X. Gray, A. M. Kaiser, A. Gloskovskii, C. S. Fadley, W. Drube, and C. M. Schneider, Phys. Status Solidi RRL 5, 441 (2011).
http://dx.doi.org/10.1002/pssr.201105403
4.
A. M. Kolpak and S. Ismail-Beigi, Phys. Rev. B 85, 195318 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195318
5.
R. Oja, M. Tyunina, L. Yao, T. Pinomaa, T. Kocourek, A. Dejneka, O. Stupakov, M. Jelinek, V. Trepakov, S. van Dijken, and R. M. Nieminen, Phys. Rev. Lett. 109, 127207 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.127207
6.
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11, 103 (2012).
http://dx.doi.org/10.1038/nmat3223
7.
J.-S. Lee, Bull. Am. Phys. Soc. 60, 020113 (2015), see http://meeting.aps.org/Meeting/MAR15/Session/W53.
8.
I. P. Bykov, M. D. Glinchuk, V. V. Laguta, A. M. Slipenyuk, S. M. Korniyenko, L. Soukup, L. Jastrabik, and A. Dejneka, Ferroelectrics 239, 349 (2000).
http://dx.doi.org/10.1080/00150190008213341
9.
S. Gallego, J. I. Beltran, J. Cerda, and M. C. Munoz, J. Phys.: Condens. Matter 17, L451 (2005).
http://dx.doi.org/10.1088/0953-8984/17/43/L04
10.
C. Gionco, E. Giamello, L. Mino, and M. C. Paganini, Phys. Chem. Chem. Phys. 16, 21438 (2014).
http://dx.doi.org/10.1039/C4CP03195D
11.
J. Rocker, D. Cornu, E. Kieseritzky, A. Seiler, O. Bondarchuk, W. Hänsel-Ziegler, T. Risse, and H.-J. Freund, Rev. Sci. Instrum. 85, 083903 (2014).
http://dx.doi.org/10.1063/1.4893729
12.
L.-B. Xiong, J.-L. Li, B. Yang, and Y. Yu, J. Nanomater. 2012, 13.
http://dx.doi.org/10.1155/2012/831524
13.
N. C. Plumb, M. Salluzzo, E. Razzoli, M. Månsson, M. Falub, J. Krempasky, C. E. Matt, J. Chang, M. Schulte, J. Braun, H. Ebert, J. Minár, B. Delley, K.-J. Zhou, T. Schmitt, M. Shi, J. Mesot, L. Patthey, and M. Radović, Phys. Rev. Lett. 113, 086801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.086801
14.
A. F. Santander-Syro, F. Fortuna, C. Bareille, T. C. Roedel, M. Del, G. Landolt, N. C. Plumb, J. H. Dil, and M. Radovic, Nat. Mater. 13, 1085 (2014).
http://dx.doi.org/10.1038/nmat4107
15.
W. Rice, P. Ambwani, M. Bombeck, J. D. Thompson, G. Haugstad, C. Leighton, and S. Crooker, Nat. Mater. 13, 481 (2014).
http://dx.doi.org/10.1038/nmat3914
16.
S. Crooker, Bull. Am. Phys. Soc. 60, 020056 (2015), see http://meeting.aps.org/Meeting/MAR15/Session/W53.
17.
M. Che, J. F. J. Kibblewhite, A. J. Tench, M. Dufaux, and C. Naccache, J. Chem. Soc., Faraday Trans. 1 69, 857 (1973).
http://dx.doi.org/10.1039/f19736900857
18.
S. Ackermann, L. Sauvin, R. Castiglioni, J. L. M. Rupp, J. R. Scheffe, and A. Steinfeld, J. Phys. Chem. C 119, 16452 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b03464
19.
F. Caputo, M. De Nicola, A. Sienkiewicz, A. Giovanetti, I. Bejarano, S. Licoccia, E. Traversa, and L. Ghibelli, Nanoscale 7, 15643 (2015).
http://dx.doi.org/10.1039/C5NR03767K
20.
V. Kharton, F. Figueiredo, L. Navarro, E. Naumovich, A. Kovalevsky, A. Yaremchenko, A. Viskup, A. Carneiro, F. Marques, and J. Frade, J. Mater. Sci. 36, 1105 (2001).
http://dx.doi.org/10.1023/A:1004817506146
21.
A. Aboukais, E. A. Zhilinskaya, J.-F. Lamonier, and I. N. Filimonov, Colloids Surf., A 260, 199 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2005.02.036
22.
P. Lakshmanan, F. Averseng, N. Bion, L. Delannoy, J.-M. Tatibout, and C. Louis, Gold Bull. 46, 233 (2013).
http://dx.doi.org/10.1007/s13404-013-0103-z
23.
M. D. Hernández-Alonso, A. B. Hungría, A. Martínez-Arias, M. Fernández-García, J. M. Coronado, J. C. Conesa, and J. Soria, Appl. Catal., B 50, 167 (2004).
http://dx.doi.org/10.1016/j.apcatb.2004.01.016
24.
H. A. Al-Madfa, M. M. Khader, and M. A. Morris, Int. J. Chem. Kinet. 36, 293 (2004).
http://dx.doi.org/10.1002/kin.10186
25.
N. Kumari, N. Sinha, M. Haider, and S. Basu, Electrochim. Acta 177, 21 (2015).
http://dx.doi.org/10.1016/j.electacta.2015.01.153
26.
S. Vahedi, G. Okada, C. Koughia, R. Sammynaiken, A. Edgar, and S. Kasap, Opt. Mater. Express 4, 1244 (2014).
http://dx.doi.org/10.1364/OME.4.001244
27.
D. M. Murphy and M. Chiesa, Electron Paramagnetic Resonance (The Royal Society of Chemistry, 2008), Vol. 21, pp. 105130.
28.
Y. S. Lebedev, High-Frequency Continuous-Wave Electron Spin Resonance (Wiley, New York, 1990), pp. 365404.
29.
W. B. Lynch, K. A. Earle, and J. H. Freed, Rev. Sci. Instrum. 59, 1345 (1988).
http://dx.doi.org/10.1063/1.1139720
30.
G. Eaton and S. Eaton, Appl. Magn. Reson. 16, 161 (1999).
http://dx.doi.org/10.1007/BF03161931
31.
J. H. Freed, Ann. Rev. Phys. Chem. 51, 655 (2000).
http://dx.doi.org/10.1146/annurev.physchem.51.1.655
32.
M. Bennati and T. F. Prisner, Rep. Prog. Phys. 68, 411 (2005).
http://dx.doi.org/10.1088/0034-4885/68/2/R05
33.
O. Grinberg and L. Berliner, Very High Frequency (VHF) ESR/EPR, Biological Magnetic Resonance (Springer, USA, 2013).
34.
K. A. Earle, J. H. Freed, and D. E. Budil, Advances in Magnetic and Optical Resonance (Academic Press, 1996), pp. 253323.
35.
K. A. Earle, D. S. Tipikin, and J. H. Freed, Rev. Sci. Instrum. 67, 2502 (1996).
http://dx.doi.org/10.1063/1.1147205
36.
D. Schmalbein, G. Maresch, A. Kamlowski, and P. Höfer, Appl. Magn. Reson. 16, 185 (1999).
http://dx.doi.org/10.1007/BF03161933
37.
B. Náfrádi, R. Gaál, A. Sienkiewicz, T. Fehér, and L. Forró, J. Magn. Reson. 195, 206 (2008).
http://dx.doi.org/10.1016/j.jmr.2008.09.014
38.
A. Savitsky and K. Möbius, Photosynth. Res. 102, 311 (2009).
http://dx.doi.org/10.1007/s11120-009-9432-4
39.
K. L. Nagy, D. Quintavalle, T. Fehér, and A. Jánossy, Appl. Magn. Reson. 40, 47 (2011).
http://dx.doi.org/10.1007/s00723-010-0182-4
40.
J. Yan, L. Barnett, C. Domier, and N. C. Luhmann, Proc. SPIE 8496, 84960D (2012).
http://dx.doi.org/10.1117/12.928064
41.
A. Hassan, A. Maniero, H. van Tol, C. Saylor, and L.-C. Brunel, Appl. Magn. Reson. 16, 299 (1999).
http://dx.doi.org/10.1007/BF03161940
42.
S. Takahashi, D. G. Allen, J. Seifter, G. Ramian, M. S. Sherwin, L.-C. Brunel, and J. van Tol, in 4th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator-Based Sources [Infrared Phys. Technol. 51, 426 (2008)].
http://dx.doi.org/10.1016/j.infrared.2007.12.036
43.
S. Takahashi, L.-C. Brunel, D. T. Edwards, J. van Tol, G. Ramian, S. Han, and M. S. Sherwin, Nature 489, 409 (2012).
http://dx.doi.org/10.1038/nature11437
44.
S. A. Zvyagin, M. Ozerov, E. Cizmár, D. Kamenskyi, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, R. Wünsch, and W. Seidel, Rev. Sci. Instrum. 80, 073102 (2009).
http://dx.doi.org/10.1063/1.3155509
45.
J. van Tol, L.-C. Brunel, and R. J. Wylde, Rev. Sci. Instrum. 76, 074101 (2005).
http://dx.doi.org/10.1063/1.1942533
46.
I. Gromov and P. Höfer, in Euromar 2013, EPR Division, Bruker Biospin GmbH, Rheinstetten, Germany.
47.
B. D. Armstrong, D. T. Edwards, R. J. Wylde, S. A. Walker, and S. Han, Phys. Chem. Chem. Phys. 12, 5920 (2010).
http://dx.doi.org/10.1039/c002290j
48.
D. Martin and E. Puplett, Infrared Phys. 10, 105 (1970).
http://dx.doi.org/10.1016/0020-0891(70)90006-0
49.
Thorlabs, Inc., 60 mm cage system optic mounts, 2015, copyright 1999-2015 Thorlabs, Inc.
50.
D. Martin, R. Wylde, and R. Wylde, IEEE Trans. Microwave Theory Tech. 57, 99 (2009).
http://dx.doi.org/10.1109/TMTT.2008.2008955
51.
D. T. Chuss, S. H. Moseley, G. Novak, and E. J. Wollack, Proc. SPIE 5492, 1487 (2004).
http://dx.doi.org/10.1117/12.552103
52.
Virginia Diodes, Inc., VAdiodes.com, sub-THz transmitter, part No Tx-237, 2015.
53.
S. Alberti, J.-P. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-P. Hogge, A. Macor, E. de Rijk, M. da Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).
http://dx.doi.org/10.1063/1.4769033
54.
E. de Rijk, A. Macor, J.-P. Hogge, S. Alberti, and J.-P. Ansermet, Rev. Sci. Instrum. 82, 066102 (2011).
http://dx.doi.org/10.1063/1.3597579
55.
P. Ade, A. Costley, C. Cunningham, C. Mok, G. Neill, and T. Parker, Infrared Phys. 19, 599 (1979).
http://dx.doi.org/10.1016/0020-0891(79)90080-0
56.
See supplementary material at http://dx.doi.org/10.1063/1.4945450 for further characterizations of the new 260 GHz Martin-Puplett high-field ESR spectrometer and a deeper understanding of the quasioptical setup and the operation, Martin-Puplett ESR spectrometer mobility and versatility.[Supplementary Material]
57.
S. Alberti, F. Braunmueller, T. M. Tran, J. Genoud, J.-P. Hogge, M. Q. Tran, and J.-P. Ansermet, Phys. Rev. Lett. 111, 205101 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.205101
58.
J.-P. Hogge, F. Braunmueller, S. Alberti, J. Genoud, T. Tran, Q. Vuillemin, M. Tran, J.-P. Ansermet, P. Cuanillon, A. Macor, E. de Rijk, and P. Saraiva, Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (IEEE, 2013).
http://dx.doi.org/10.1109/IRMMW-THz.2013.6665407
59.
J. Krzystek, A. Sienkiewicz, L. Pardi, and L. Brunel, J. Magn. Reson. 125, 207 (1997).
http://dx.doi.org/10.1006/jmre.1996.1098
60.
L. Lumata, M. Merritt, C. Khemtong, S. J. Ratnakar, J. van Tol, L. Yu, L. Song, and Z. Kovacs, RSC Adv. 2, 12812 (2012).
http://dx.doi.org/10.1039/c2ra21853d
61.
J. H. O. Barbosa, J. A. G. Luna, A. M. O. Kinoshita, and O. Baffa Filho, Cienc. Agrotecnol. 37, 495 (2013).
http://dx.doi.org/10.1590/S1413-70542013000600002
62.
S. Kolaczkowski, J. Cardin, and D. Budil, Appl. Magn. Reson. 16, 293 (1999).
http://dx.doi.org/10.1007/BF03161939
63.
A. Abragam, “Electron-nucleus interactions,” in The Principles of Nuclear Magnetism (Clarendon Press, 1983), Chap. VI, p. 191ff.
64.
S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).
http://dx.doi.org/10.1016/j.jmr.2005.08.013
65.
S. Stoll, in Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions, Part A, Methods in Enzymology Vol. 563, edited by P. Z. Qin and K. Warncke (Academic Press, 2015), pp. 121142.
66.
R. W. Holmberg, “A paramagnetic resonance study of hyperfine interactions in single-crystals containing α,α-diphenyl-β picrylhydrazil,” J. Chem. Phys. 33, 541 (1960).
http://dx.doi.org/10.1063/1.1731181
67.
H. D. Wijn and J. Henning, Physica 28, 592 (1962).
http://dx.doi.org/10.1016/0031-8914(62)90114-3
68.
R. J. Gorte, AIChE J. 56, 1126 (2010).
http://dx.doi.org/10.1002/aic.12234
69.
S.-F. Wang, C.-T. Yeh, Y.-R. Wang, and Y.-C. Wu, J. Mater. Res. Technol. 2, 141 (2013).
http://dx.doi.org/10.1016/j.jmrt.2013.01.004
70.
A. Sienkiewicz, “On high-field ESR spectra of Sm-CeO2,” private communication (2015).
71.
C. Caspers, 260 GHz high field ESR spectra of Sm-doped CeO2, measurements reports at LPMN, 2016.
72.
D. Hui-Ning, Z. Wen-Chen, W. Shao-Yi, and T. Sheng, Spectrochim. Acta, Part A 60, 489 (2004).
http://dx.doi.org/10.1016/S1386-1425(03)00214-2
73.
L. Lumata, S. J. Ratnakar, A. Jindal, M. Merritt, A. Comment, C. Malloy, A. D. Sherry, and Z. Kovacs, Chem. - Eur. J. 17, 10825 (2011).
http://dx.doi.org/10.1002/chem.201102037
74.
T. V. Can, M. A. Caporini, F. Mentink-Vigier, B. Corzilius, J. J. Walish, M. Rosay, W. E. Maas, M. Baldus, S. Vega, T. M. Swager, and R. G. Griffin, J. Chem. Phys. 141, 064202 (2014).
http://dx.doi.org/10.1063/1.4891866
75.
L. Becerra, G. Gerfen, B. Bellew, J. Bryant, D. Hall, S. Inati, R. Weber, S. Un, T. Prisner, A. McDermott, K. Fishbein, K. Kreischer, R. Temkin, D. Singel, and R. Griffin, J. Magn. Reson., Ser. A 117, 28 (1995).
http://dx.doi.org/10.1006/jmra.1995.9975
76.
Swissto12 SA, Swissto12.ch, terahertz applications, 2015.
http://aip.metastore.ingenta.com/content/aip/journal/app/1/2/10.1063/1.4945450
Loading
/content/aip/journal/app/1/2/10.1063/1.4945450
Loading

Data & Media loading...

Abstract

260-GHz radiation is used for a quasi-optical electron spin resonance (ESR) spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH) using field modulation. Original high-field ESR of 4 electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/2/1.4945450.html;jsessionid=Qo3qu721mlwUFuAO1jN1OgIR.x-aip-live-06?itemId=/content/aip/journal/app/1/2/10.1063/1.4945450&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/2/10.1063/1.4945450&pageURL=http://scitation.aip.org/content/aip/journal/app/1/2/10.1063/1.4945450'
Right1,Right2,Right3,