Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. Zibrov, P. Hemmer, and M. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 13121316 (2007).
P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 13261329 (2008).
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, “The nitrogen-vacancy colour centre in diamond,” Phys. Rep. 528, 145 (2013).
G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler et al., “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383387 (2009).
N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, “Solid-state electronic spin coherence time approaching one second,” Nat. Commun. 4, 1743 (2013).
P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 13261329 (2008).
T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer et al., “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408413 (2006).
E. Togan, Y. Chu, A. Trifonov, L. Jiang, J. Maze, L. Childress, M. G. Dutt, A. S. Sørensen, P. Hemmer, A. Zibrov et al., “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730734 (2010).
H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. Blok, L. Robledo, T. Taminiau, M. Markham, D. Twitchen, L. Childress et al., “Heralded entanglement between solid-state qubits separated by three metres,” Nature 497, 8690 (2013).
W. Pfaff, B. Hensen, H. Bernien, S. B. van Dam, M. S. Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten, M. Markham, D. J. Twitchen et al., “Unconditional quantum teleportation between distant solid-state quantum bits,” Science 345, 532535 (2014).
A. Sipahigil, M. L. Goldman, E. Togan, Y. Chu, M. Markham, D. J. Twitchen, A. S. Zibrov, A. Kubanek, and M. D. Lukin, “Quantum interference of single photons from remote nitrogen-vacancy centers in diamond,” Phys. Rev. Lett. 108, 143601 (2012).
B. Hensen, H. Bernien, A. Dréau, A. Reiserer, N. Kalb, M. Blok, J. Ruitenberg, R. Vermeulen, R. Schouten, C. Abellán et al., “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682686 (2015).
H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012).
H.-Q. Zhao, M. Fujiwara, and S. Takeuchi, “Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect,” Opt. Express 20, 1562815635 (2012).
H. J. Kimble, “The quantum internet,” Nature 453, 10231030 (2008).
S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1, 449458 (2007).
C. Santori, D. Fattal, and Y. Yamamoto, Single-Photon Devices and Applications (John Wiley & Sons, 2010).
L. Li, T. Schröder, E. H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M. E. Trusheim, M. Lu, J. Mower et al., “Coherent spin control of a nanocavity-enhanced qubit in diamond,” Nat. Commun. 6, 6173 (2015).
A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012).
T. Tiecke, J. D. Thompson, N. P. de Leon, L. Liu, V. Vuletić, and M. D. Lukin, “Nanophotonic quantum phase switch with a single atom,” Nature 508, 241244 (2014).
J. Orwa, C. Santori, K. Fu, B. Gibson, D. Simpson, I. Aharonovich, A. Stacey, A. Cimmino, P. Balog, M. Markham et al., “Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing,” J. Appl. Phys. 109, 083530 (2011).
J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar et al., “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105, 261101 (2014).
M. Lesik, P. Spinicelli, S. Pezzagna, P. Happel, V. Jacques, O. Salord, B. Rasser, A. Delobbe, P. Sudraud, A. Tallaire et al., “Maskless and targeted creation of arrays of colour centres in diamond using focused ion beam technology,” Phys. Status Solidi A 210, 20552059 (2013).
D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10, 31683172 (2010).
P. Spinicelli, A. Dréau, L. Rondin, F. Silva, J. Achard, S. Xavier, S. Bansropun, T. Debuisschert, S. Pezzagna, J. Meijer et al., “Engineered arrays of nitrogen-vacancy color centers in diamond based on implantation of CN molecules through nanoapertures,” New J. Phys. 13, 025014 (2011).
S. Pezzagna, D. Wildanger, P. Mazarov, A. D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S. W. Hell, and J. Meijer, “Nanoscale engineering and optical addressing of single spins in diamond,” Small 6, 21172121 (2010).
T. Schroder, E. Chen, L. Li, M. Walsh, M. E. Trusheim, I. Bayn, and D. Englund, “Targeted creation and Purcell enhancement of NV centers within photonic crystal cavities in single-crystal diamond,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2014), pp. FW1B.6.
T. Schroder, L. Li, E. Chen, M. Walsh, M. E. Trusheim, I. Bayn, J. Zheng, S. Mouradian, H. Bakhru, O. Gaathon et al., “Deterministic high-yield creation of nitrogen vacancy centers in diamond photonic crystal cavities and photonic elements,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2015), pp. Fth3B-1.
I. Bayn, E. H. Chen, M. E. Trusheim, L. Li, T. Schröder, O. Gaathon, M. Lu, A. Stein, M. Liu, K. Kisslinger et al., “Generation of ensembles of individually resolvable nitrogen vacancies using nanometer-scale apertures in ultrahigh-aspect ratio planar implantation masks,” Nano Lett. 15, 17511758 (2015).
J. F. Ziegler, “SRIM-2003,” Nucl. Instrum. Methods Phys. Res., Sect. B 219, 10271036 (2004).
B. Hausmann, B. Shields, Q. Quan, Y. Chu, N. De Leon, R. Evans, M. Burek, A. Zibrov, M. Markham, D. Twitchen et al., “Coupling of NV centers to photonic crystal nanobeams in diamond,” Nano Lett. 13, 57915796 (2013).
I. Bayn, S. Mouradian, L. Li, J. Goldstein, T. Schröder, J. Zheng, E. Chen, O. Gaathon, M. Lu, A. Stein et al., “Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks,” Appl. Phys. Lett. 105, 211101 (2014).
L. Li, I. Bayn, M. Lu, C.-Y. Nam, T. Schröder, A. Stein, N. C. Harris, and D. Englund, “Nanofabrication on unconventional substrates using transferred hard masks,” Sci. Rep. 5, 7802 (2015).
R. A. Gottscho, C. W. Jurgensen, and D. Vitkavage, “Microscopic uniformity in plasma etching,” J. Vac. Sci. Technol., B 10, 21332147 (1992).
E. S. Shaqfeh and C. W. Jurgensen, “Simulation of reactive ion etching pattern transfer,” J. Appl. Phys. 66, 46644675 (1989).
C. Jurgensen, “Sheath collision processes controlling the energy and directionality of surface bombardment in O2 reactive ion etching,” J. Appl. Phys. 64, 590597 (1988).
M. J. Burek, N. P. de Leon, B. J. Shields, B. J. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Loncar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12, 60846089 (2012).
B. Naydenov, V. Richter, J. Beck, M. Steiner, P. Neumann, G. Balasubramanian, J. Achard, F. Jelezko, J. Wrachtrup, and R. Kalish, “Enhanced generation of single optically active spins in diamond by ion implantation,” Appl. Phys. Lett. 96, 163108 (2010).
S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, and J. Meijer, “Creation efficiency of nitrogen-vacancy centres in diamond,” New J. Phys. 12, 065017 (2010).
D. Antonov, T. Häußermann, A. Aird, J. Roth, H.-R. Trebin, C. Müller, L. McGuinness, F. Jelezko, T. Yamamoto, J. Isoya et al., “Statistical investigations on nitrogen-vacancy center creation,” Appl. Phys. Lett. 104, 012105 (2014).
J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Appl. Phys. Lett. 87, 261909 (2005).
C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
R. Brouri, A. Beveratos, J.-P. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett. 25, 12941296 (2000).
M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, and A. Drezet, “Photophysics of single nitrogen-vacancy centers in diamond nanocrystals,” Phys. Rev. B 91, 035308 (2015).
A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301305 (2011).
J. C. Lee, D. O. Bracher, S. Cui, K. Ohno, C. A. McLellan, X. Zhang, P. Andrich, B. Alemán, K. J. Russell, A. P. Magyar et al., “Deterministic coupling of delta-doped nitrogen vacancy centers to a nanobeam photonic crystal cavity,” Appl. Phys. Lett. 105, 261101 (2014).

Data & Media loading...


We demonstrate a self-aligned lithographic technique for precision generation of nitrogen vacancy (NV) centers within photonic nanostructures on bulk diamond substrates. The process relies on a lithographic mask with nanoscale implantation apertures for NV creation, together with larger features for producing waveguides and photonic nanocavities. This mask allows targeted nitrogen ion implantation, and precision dry etching of nanostructures on bulk diamond. We demonstrate high-yield generation of single NVs at pre-determined nanoscale target regions on suspended diamond waveguides. We report implantation into the mode maximum of diamond photonic crystal nanocavities with a single-NV per cavity yield of ∼26% and Purcell induced intensity enhancement of the zero-phonon line. The generation of NV centers aligned with diamond photonic structures marks an important tool for scalable production of optically coupled spin memories.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd