Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Y. Chen, J. J. Mock, R. T. Hill, A. Chilkoti, D. R. Smith, and A. A. Lazarides, ACS Nano 4, 6535 (2010).
W. Kubo and S. Fujikawa, Nano Lett. 11, 8 (2011).
S. Mubeen, S. P. Zhang, N. Kim, S. Lee, S. Kramer, H. X. Xu, and M. Moskovits, Nano Lett. 12, 2088 (2012).
L. Li, T. Hutter, U. Steiner, and S. Mahajan, Analyst 138, 4574 (2013).
J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, Opt. Express 22, 14425 (2014).
S. A. Mann and E. C. Garnett, ACS Photonics 2, 816 (2015).
H. I. Park, S. Lee, J. M. Lee, S. A. Nam, T. Jeon, S. W. Han, and S. O. Kim, ACS Nano 8, 10305 (2014).
Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, Nano Lett. 11, 1111 (2011).
M. A. Mahmoud and M. A. El-Sayed, ChemCatChem 6, 3540 (2014).
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, Nano Lett. 14, 4381 (2014).
J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, Nano Lett. 8, 2245 (2008).
M. W. Knight, Y. P. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, Nano Lett. 9, 2188 (2009).
C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Science 337, 1072 (2012).
M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, J. Phys. Chem. C 114, 7509 (2010).
C. Lumdee, S. Toroghi, and P. G. Kik, ACS Nano 6, 6301 (2012).
T. Ding, D. Sigle, L. W. Zhang, J. Mertens, B. de Nijs, and J. Baumberg, ACS Nano 9, 6110 (2015).
E. Prodan and P. Nordlander, J. Chem. Phys. 120, 5444 (2004).
F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006).
H. Wei, U. Hakanson, Z. L. Yang, F. Hook, and H. X. Xu, Small 4, 1296 (2008).
N. Jahr, M. Anwar, O. Stranik, N. Hadrich, N. Vogler, A. Csaki, J. Popp, and W. Fritzsche, J. Phys. Chem. C 117, 7751 (2013).
M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, Nano Lett. 13, 4602 (2013).
C. Lumdee, B. Yun, and P. G. Kik, J. Phys. Chem. C 117, 19127 (2013).
Y. Cui, M. T. Bjork, J. A. Liddle, C. Sonnichsen, B. Boussert, and A. P. Alivisatos, Nano Lett. 4, 1093 (2004).
J. A. Fan, K. Bao, L. Sun, J. M. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Nano Lett. 12, 5318 (2012).
CST Microwave Studio®, Computer Simulation Technology, Darmstadt, Germany.
E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, Orlando, London, 1985).
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
T. Lichtenstein, Handbook of Thin Film Materials (University of Rochester, Rochester, NY, 1979).
J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, Biophys. J. 90, 3288 (2006).
J. M. Moran-Mirabal and H. G. Craighead, Methods 46, 11 (2008).
J. Larkin, M. Foquet, S. W. Turner, J. Korlach, and M. Wanunu, Nano Lett. 14, 6023 (2014).
A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, Nano Lett. 4, 2015 (2004).
B. Nie, C. L. He, and L. J. Liu, J. Raman Spectrosc. 44, 1512 (2013).

Data & Media loading...


The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd