Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/3/10.1063/1.4945354
1.
S. Y. Chen, J. J. Mock, R. T. Hill, A. Chilkoti, D. R. Smith, and A. A. Lazarides, ACS Nano 4, 6535 (2010).
http://dx.doi.org/10.1021/nn101644s
2.
W. Kubo and S. Fujikawa, Nano Lett. 11, 8 (2011).
http://dx.doi.org/10.1021/nl100787b
3.
S. Mubeen, S. P. Zhang, N. Kim, S. Lee, S. Kramer, H. X. Xu, and M. Moskovits, Nano Lett. 12, 2088 (2012).
http://dx.doi.org/10.1021/nl300351j
4.
L. Li, T. Hutter, U. Steiner, and S. Mahajan, Analyst 138, 4574 (2013).
http://dx.doi.org/10.1039/c3an00447c
5.
J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, Opt. Express 22, 14425 (2014).
http://dx.doi.org/10.1364/OE.22.014425
6.
S. A. Mann and E. C. Garnett, ACS Photonics 2, 816 (2015).
http://dx.doi.org/10.1021/acsphotonics.5b00260
7.
H. I. Park, S. Lee, J. M. Lee, S. A. Nam, T. Jeon, S. W. Han, and S. O. Kim, ACS Nano 8, 10305 (2014).
http://dx.doi.org/10.1021/nn503508p
8.
Z. W. Liu, W. B. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, Nano Lett. 11, 1111 (2011).
http://dx.doi.org/10.1021/nl104005n
9.
M. A. Mahmoud and M. A. El-Sayed, ChemCatChem 6, 3540 (2014).
http://dx.doi.org/10.1002/cctc.201402644
10.
R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, Nature 461, 629 (2009).
http://dx.doi.org/10.1038/nature08364
11.
Y. J. Lu, C. Y. Wang, J. Kim, H. Y. Chen, M. Y. Lu, Y. C. Chen, W. H. Chang, L. J. Chen, M. I. Stockman, C. K. Shih, and S. Gwo, Nano Lett. 14, 4381 (2014).
http://dx.doi.org/10.1021/nl501273u
12.
J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, Nano Lett. 8, 2245 (2008).
http://dx.doi.org/10.1021/nl080872f
13.
M. W. Knight, Y. P. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, Nano Lett. 9, 2188 (2009).
http://dx.doi.org/10.1021/nl900945q
14.
C. Ciraci, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernandez-Dominguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Science 337, 1072 (2012).
http://dx.doi.org/10.1126/science.1224823
15.
M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, J. Phys. Chem. C 114, 7509 (2010).
http://dx.doi.org/10.1021/jp911416a
16.
C. Lumdee, S. Toroghi, and P. G. Kik, ACS Nano 6, 6301 (2012).
http://dx.doi.org/10.1021/nn301742p
17.
T. Ding, D. Sigle, L. W. Zhang, J. Mertens, B. de Nijs, and J. Baumberg, ACS Nano 9, 6110 (2015).
http://dx.doi.org/10.1021/acsnano.5b01283
18.
E. Prodan and P. Nordlander, J. Chem. Phys. 120, 5444 (2004).
http://dx.doi.org/10.1063/1.1647518
19.
F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, Phys. Rev. B 74, 205419 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.205419
20.
H. Wei, U. Hakanson, Z. L. Yang, F. Hook, and H. X. Xu, Small 4, 1296 (2008).
http://dx.doi.org/10.1002/smll.200701135
21.
N. Jahr, M. Anwar, O. Stranik, N. Hadrich, N. Vogler, A. Csaki, J. Popp, and W. Fritzsche, J. Phys. Chem. C 117, 7751 (2013).
http://dx.doi.org/10.1021/jp311135g
22.
M. P. Cecchini, A. Wiener, V. A. Turek, H. Chon, S. Lee, A. P. Ivanov, D. W. McComb, J. Choo, T. Albrecht, S. A. Maier, and J. B. Edel, Nano Lett. 13, 4602 (2013).
http://dx.doi.org/10.1021/nl402108g
23.
C. Lumdee, B. Yun, and P. G. Kik, J. Phys. Chem. C 117, 19127 (2013).
http://dx.doi.org/10.1021/jp4056522
24.
Y. Cui, M. T. Bjork, J. A. Liddle, C. Sonnichsen, B. Boussert, and A. P. Alivisatos, Nano Lett. 4, 1093 (2004).
http://dx.doi.org/10.1021/nl049488i
25.
J. A. Fan, K. Bao, L. Sun, J. M. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Nano Lett. 12, 5318 (2012).
http://dx.doi.org/10.1021/nl302650t
26.
CST Microwave Studio®, Computer Simulation Technology, Darmstadt, Germany.
27.
E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, Orlando, London, 1985).
28.
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
29.
T. Lichtenstein, Handbook of Thin Film Materials (University of Rochester, Rochester, NY, 1979).
30.
J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
31.
M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
http://dx.doi.org/10.1126/science.1079700
32.
K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, Biophys. J. 90, 3288 (2006).
http://dx.doi.org/10.1529/biophysj.105.072819
33.
J. M. Moran-Mirabal and H. G. Craighead, Methods 46, 11 (2008).
http://dx.doi.org/10.1016/j.ymeth.2008.05.010
34.
J. Larkin, M. Foquet, S. W. Turner, J. Korlach, and M. Wanunu, Nano Lett. 14, 6023 (2014).
http://dx.doi.org/10.1021/nl503134x
35.
A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, Nano Lett. 4, 2015 (2004).
http://dx.doi.org/10.1021/nl048818w
36.
B. Nie, C. L. He, and L. J. Liu, J. Raman Spectrosc. 44, 1512 (2013).
http://dx.doi.org/10.1002/jrs.4380
http://aip.metastore.ingenta.com/content/aip/journal/app/1/3/10.1063/1.4945354
Loading
/content/aip/journal/app/1/3/10.1063/1.4945354
Loading

Data & Media loading...

Abstract

The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/3/1.4945354.html;jsessionid=o9_qsYA7n9KJEGg2ZZzfNwEE.x-aip-live-02?itemId=/content/aip/journal/app/1/3/10.1063/1.4945354&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/3/10.1063/1.4945354&pageURL=http://scitation.aip.org/content/aip/journal/app/1/3/10.1063/1.4945354'
Right1,Right2,Right3,