Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Handbook of Terahertz Technology Devices and Applications, edited by H.-J. Song and T. Nagatsuma (Pan Stanford Publishing, 2015).
M. A. Belkin and F. Capasso, Phys. Scr. 90, 118002 (2015);
B. S. Williams, Nat. Photonics 1, 517 (2007).
Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, IEEE Trans. Terahertz Sci. Technol. 2, 83 (2012).
A. Crocker, H. A. Gebbie, M. F. Kimmitt, and L. E. S. Mathias, Nature 201, 250 (1964).
H. A. Gebbie, N. W. B. Stone, and F. D. Findlay, Nature 202, 685 (1964).
T. Y. Chang and T. J. Bridges, Opt. Commun. 1, 423 (1970).
G. D. Willenberg, U. Hübner, and J. Heppner, Opt. Commun. 33, 193 (1980);
R. Marx, U. Hübner, I. Abdul-Halim, J. Heppner, Y. C. Ni, G. D. Willenberg, and C. O. Weiss, IEEE J. Quantum Electron. 17, 1123 (1981).
J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994);
J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, 2013).
Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photonics 6, 432 (2012).
T. Y. Chang, T. J. Bridges, and E. G. Burkhardt, Appl. Phys. Lett. 17, 357 (1970).
A. Tanaka, A. Tanimoto, N. Murata, M. Yamanaka, and H. Yoshinaga, Opt. Commun. 22, 17 (1977).
C. O. Weiss, M. Fourrier, C. Gastaud, and M. Redon, in Reviews of Infrared and Millimeter Waves: Optically Pumped Far-Infrared Lasers, edited by K. J. Button, M. Inguscio, and F. Strumia (Plenum Press, New York, 1984), Vol. 2.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955).
E. F. Barker, Phys. Rev. 33, 684 (1929).
D. M. Dennison and J. D. Hardy, Phys. Rev. 39, 938 (1932).
See for access to the Jet Propulsion Laboratory Molecular Spectroscopy Database.
D. T. Hodges, F. B. Foote, and R. D. Reel, Appl. Phys. Lett. 29, 662 (1976).
P. Chen, J. C. Pearson, H. M. Pickett, S. Matsuura, and G. A. Blake, J. Mol. Spectrosc. 236, 116 (2006).
K. Gullberg, B. Hartmann, and B. Kleman, Phys. Scr. 8, 177 (1973).
E. J. Danielewicz and C. O. Weiss, Opt. Commun. 27, 98 (1978).
M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, Nat. Photonics 1, 288 (2007).
Q. Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, Appl. Phys. Lett. 104, 221105 (2014).
M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. Koch, Opt. Express 18, 27112 (2010).
F. Nakajima, T. Furuta, and H. Ito, Electron. Lett. 40, 1297 (2004).
F. Xie, C. Caneau, H. Leblanc, D. Caffey, L. Hughes, T. Day, and C. Zah, IEEE J. Sel. Top. Quantum Electron. 19, 1200407 (2013).
D.-T. Nguyen, F. Simoens, J.-L. Ouvrier-Buffet, J. Meilhan, and J.-L. Coutaz, IEEE Trans. Terahertz Sci. Technol. 2, 299 (2012).
A. Huber, F. Keilmann, J. Wittborn, J. Aizpura, and R. Hillenbrand, Nano Lett. 8, 3766 (2008).
A. Pagies, G. Deokar, D. Ducatteau, D. Vignaud, and J.-F. Lampin, “THz near-field nanoscopy of graphene layers,” in Proceedings of the 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Hong-Kong, China, 23–28 August 2015.

Data & Media loading...


We demonstrate a low-threshold, compact, room temperature, and continuous-wave terahertz molecular laser optically pumped by a mid-infrared quantum cascade laser. These characteristics are obtained, thanks to large dipole transitions of the active medium: NH (ammonia) in gas state. The low-power (<60 mW) laser pumping excites the molecules, thanks to intense mid-infrared transitions around 10.3 m. The molecules de-excite by stimulated emission on pure inversion “umbrella-mode” quantum transitions allowed by the tunnel effect. The tunability of the quantum cascade laser gives access to several pure inversion transitions with different rotation states: we demonstrate the continuous-wave generation of ten laser lines around 1 THz. At 1.07 THz, we measure a power of 34 W with a very low-threshold of 2 mW and a high differential efficiency of 0.82 mW/W. The spectrum was measured showing that the linewidth is lower than 1 MHz. To our knowledge, this is the first THz molecular laser pumped by a solid-state source and this result opens the way for compact, simple, and efficient THz source at room temperature for imaging applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd