Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/3/10.1063/1.4945356
1.
C. S. Tsai, IEEE Trans. Circuits Syst. 26, 1072 (1979).
http://dx.doi.org/10.1109/tcs.1979.1084598
2.
A. Korpel, Acousto-Optics, 2nd ed. (CRC Press, 1996).
3.
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature 462, 78 (2009).
http://dx.doi.org/10.1038/nature08524
4.
G. Bahl, J. Zehnpfennig, M. Tomes, and T. Carmon, Nat. Commun. 2, 403 (2011).
http://dx.doi.org/10.1038/ncomms1412
5.
J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
6.
D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, Nat. Photonics 5, 605 (2011).
http://dx.doi.org/10.1038/nphoton.2011.208
7.
J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, Nat. Phys. 9, 712 (2013).
http://dx.doi.org/10.1038/nphys2748
8.
S. Ghosh and G. Piazza, Opt. Express 23, 15477 (2015).
http://dx.doi.org/10.1364/OE.23.015477
9.
C. Baker, W. Hease, D.-T. Nguyen, A. Andronico, S. Ducci, G. Leo, and I. Favero, Opt. Express 22, 14072 (2014).
http://dx.doi.org/10.1364/OE.22.014072
10.
K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, and K. Srinivasan, Optica 1, 414 (2014).
http://dx.doi.org/10.1364/OPTICA.1.000414
11.
M. M. de Lima and P. V. Santos, Rep. Prog. Phys. 68, 1639 (2005).
http://dx.doi.org/10.1088/0034-4885/68/7/R02
12.
M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, Appl. Phys. Lett. 89, 121104 (2006).
http://dx.doi.org/10.1063/1.2354411
13.
S. A. Tadesse and M. Li, Nat. Commun. 5, 5402 (2014).
http://dx.doi.org/10.1038/ncomms6402
14.
D. Royer and E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation (Springer Science & Business Media, 1999).
15.
G. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson III, and R. Ruby, MRS Bull. 37, 1051 (2012).
http://dx.doi.org/10.1557/mrs.2012.268
16.
M. Rinaldi, C. Zuniga, C. Zuo, and G. Piazza, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 38 (2010).
http://dx.doi.org/10.1109/TUFFC.2010.1376
17.
S. Y. Davydov, Semiconductors 36, 41 (2002).
http://dx.doi.org/10.1134/1.1434511
18.
S. Ghosh and G. Piazza, J. Appl. Phys. 113, 016101 (2013).
http://dx.doi.org/10.1063/1.4772601
19.
C. Xiong, W. H. P. Pernice, and H. X. Tang, Nano Lett. 12, 3562 (2012).
http://dx.doi.org/10.1021/nl3011885
20.
J.-B. You, M. Park, J.-W. Park, and G. Kim, Opt. Express 16, 18340 (2008).
http://dx.doi.org/10.1364/OE.16.018340
21.
P. Gräupner, J. C. Pommier, A. Cachard, and J. L. Coutaz, J. Appl. Phys. 71, 4136 (1992).
http://dx.doi.org/10.1063/1.350844
22.
D. Branch, K. Wojciechowski, and R. Olsson, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 729 (2014).
http://dx.doi.org/10.1109/TUFFC.2014.2965
23.
S. Gong and G. Piazza, IEEE Trans. Electron Devices 60, 3888 (2013).
http://dx.doi.org/10.1109/ted.2013.2281734
24.
R. C. Williamson and R. D. Esman, J. Light. Technol. 26, 1145 (2008).
http://dx.doi.org/10.1109/JLT.2008.923627
25.
D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, Laser Photonics Rev. 7, 506 (2013).
http://dx.doi.org/10.1002/lpor.201200032
http://aip.metastore.ingenta.com/content/aip/journal/app/1/3/10.1063/1.4945356
Loading
/content/aip/journal/app/1/3/10.1063/1.4945356
Loading

Data & Media loading...

Abstract

An integrated strain-based optical modulator driven by a piezoelectric laterally vibrating resonator is demonstrated. The composite structure consists of an acoustic Lamb wave resonator, in which a photonic racetrack resonator is internally embedded to enable overlap of the guided optical mode with the induced strain field. Both types of resonators are defined in an aluminum nitride (AlN) thin film, which rests upon a layer of silicon dioxide in order to simultaneously define optical waveguides, and the structure is released from a silicon substrate. Lateral vibrations produced by the acoustic resonator are transferred through a partially etched layer of AlN, producing a change in the effective index of the guided wave through the interaction of the strain components with the AlN elasto-optic () coefficients. Optical modulation through the elasto-optic effect is demonstrated at electromechanically actuated frequencies of 173 MHz and 843 MHz. This device geometry further enables the development of MEMS-based optical modulators in addition to studying elasto-optic interactions in suspended piezoelectric thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/3/1.4945356.html;jsessionid=mggCn5B93fxbP8iIGVZCUfmp.x-aip-live-02?itemId=/content/aip/journal/app/1/3/10.1063/1.4945356&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/3/10.1063/1.4945356&pageURL=http://scitation.aip.org/content/aip/journal/app/1/3/10.1063/1.4945356'
Right1,Right2,Right3,