Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. Dhar, S. Wang, J. R. Williams, S. T. Pantelides, and L. C. Feldman, MRS Bull. 30, 288 (2005).
D. J. Christle, A. L. Falk, P. Andrich, P. V. Klimov, J. U. Hassan, N. T. Son, E. Janzén, T. Ohshima, and D. D. Awschalom, Nat. Mater. 14, 160 (2014).
M. Widmann, S.-Y. Lee, T. Rendler, N. T. Son, H. Fedder, S. Paik, L.-P. Yang, N. Zhao, S. Yang, I. Booker, A. Denisenko, M. Jamali, S. A. Momenzadeh, I. Gerhardt, T. Ohshima, A. Gali, E. Janzén, and J. Wrachtrup, Nat. Mater. 14, 164 (2014).
S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, Nat. Mater. 13, 151156 (2014).
M. S. Janson, M. K. Linnarsson, A. Hallen, B. G. Svensson, N. Achtziger, L. Uneus, A. Lloyd spetz, and U. Forsberg, Phys. Scr. 2004, 99.
G. Alfieri, E. V. Monakhov, B. G. Svensson, and A. Hallén, J. Appl. Phys. 98, 113524 (2005).
G. Alfieri and T. Kimoto, J. Appl. Phys. 101, 103716 (2007).
G. Alfieri and T. Kimoto, New J. Phys. 10, 073017 (2008).
A. Barcz, M. Kozubal, R. Jakieła, J. Ratajczak, J. Dyczewski, K. Gołaszewska, T. Wojciechowski, and G. K. Celler, J. Appl. Phys. 115, 223710 (2014).
V. P. Amarasinghe, L. Wielunski, A. Barcz, L. C. Feldman, and G. K. Celler, ECS J. Solid State Sci. Technol. 3, P37 (2014).
A. Steigerwald, A. B. Hmelo, K. Varga, L. C. Feldman, and N. Tolk, J. Appl. Phys. 112, 013514 (2012).
C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
A. Steigerwald, Y. Xu, J. Qi, J. Gregory, X. Liu, J. K. Furdyna, K. Varga, A. B. Hmelo, G. Lüpke, L. C. Feldman, N. Tolk, G. Lüpke, L. C. Feldman, and N. Tolk, Appl. Phys. Lett. 94, 1 (2009).
J. Gregory, A. Steigerwald, H. Takahashi, A. Hmelo, and N. Tolk, Appl. Phys. Lett. 101, 181904 (2012).
J. Gregory, A. Steigerwald, H. Takahashi, A. Hmelo, and N. Tolk, Appl. Phys. Lett. 103, 049904 (2013).
S. Wu, P. Geiser, J. Jun, J. Karpinski, and R. Sobolewski, Phys. Rev. B 76, 085210 (2007).
R. Ahuja, A. Ferreira Da Silva, C. Persson, J. M. Osorio-Guillén, I. Pepe, K. Järrendahl, O. P. A. Lindquist, N. V. Edwards, Q. Wahab, and B. Johansson, J. Appl. Phys. 91, 2099 (2002).
J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).
D. B. Hondongwa, L. R. Olasov, B. C. Daly, S. W. King, and J. Bielefeld, Thin Solid Films 519, 7895 (2011).
I. R. Cox-Smith, J. Vac. Sci. Technol., A 3, 674 (1985).
A. Battiato, F. Bosia, S. Ferrari, P. Olivero, A. Sytchkova, and E. Vittone, Opt. Lett. 37, 671 (2012).
P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 2006).
D. T. Y. Wei, Appl. Phys. Lett. 25, 329 (1974).
K. Wenzlik, J. Heibei, and E. Voges, Phys. Status Solidi A 61, K207 (1980).
T. C. Sum, A. A. Bettiol, J. A. van Kan, S. Venugopal Rao, F. Watt, K. Liu, and E. Y. B. Pun, J. Appl. Phys. 98, 033533 (2005).
I. T. Bae, W. J. Weber, and Y. Zhang, J. Appl. Phys. 106, 123525 (2009).
W. Jiang, C. M. Wang, W. J. Weber, M. H. Engelhard, and L. V. Saraf, J. Appl. Phys. 95, 4687 (2004).
R. L. Hines, Phys. Rev. 138, A1747 (1965).
P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, Diamond Relat. Mater. 19, 428 (2010).
M. A. Draganski, E. Finkman, B. C. Gibson, B. A. Fairchild, K. Ganesan, N. Nabatova-Gabain, S. Tomljenovic-Hanic, A. D. Greentree, and S. Prawer, Opt. Mater. Express 2, 644 (2012).
S. Lagomarsino, P. Olivero, S. Calusi, D. G. Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini, and M. Vannoni, Opt. Express 20, 19382 (2012).
G. K. Hubler, C. N. Waddell, W. G. Spitzer, J. E. Fredrickson, S. Prussin, and R. G. Wilson, J. Appl. Phys. 50, 3294 (1979).
G. K. Hubler, P. R. Malmberg, C. A. Carosella, T. P. Smith, W. G. Spitzer, C. N. Waddell, and C. N. Phillippi, Radiat. Eff. 48, 81 (1980).
C. N. Waddell, J. Appl. Phys. 53, 5851 (1982).
J. E. Fredrickson, Appl. Phys. Lett. 40, 172 (1982).
K.-W. Wang, W. G. Spitzer, G. K. Hubler, and E. P. Donovan, J. Appl. Phys. 57, 2739 (1985).

Data & Media loading...


Silicon carbide (SiC) is a promising material for new generation electronics including high power/high temperature devices and advanced optical applications such as room temperature spintronics and quantum computing. Both types of applications require the control of defects particularly those created by ion bombardment. In this work, modification of optical constants of 4H-SiC due to hydrogen implantation at 180 keV and at fluences ranging from 1014 to 1016 cm−2 is reported. The depth dependence of the modified optical constants was extracted from coherent acoustic phonon spectra. Implanted spectra show a strong dependence of the 4H-SiC complex refractive index depth profile on H+ fluence. These studies provide basic insight into the dependence of optical properties of 4H silicon carbide on defect densities created by ion implantation, which is of relevance to the fabrication of SiC-based photonic and optoelectronic devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd