Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. de Raedt, A. D. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62, 4750 (1989).
L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327, 1352 (2010).
C. Toninelli, E. Vekris, G. A. Ozin, S. John, and D. S. Wiersma, “Exceptional reduction of the diffusion constant in partially disordered photonic crystals,” Phys. Rev. Lett. 101, 123901 (2008).
M. P. van Albada and A. Lagendijk, “Observation of weak localization of light in a random medium,” Phys. Rev. Lett. 55, 26922695 (1985).
H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278 (1999).
P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66, 144202 (2002).
F. Riboli, P. Barthelemy, S. Vignolini, F. Intonti, A. De Rossi, S. Combrie, and D. S. Wiersma, “Anderson localization of near-visible light in two dimensions,” Opt. Lett. 36, 127129 (2011).
J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491(7423), 232-234 (2012).
D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7, 188196 (2013).
J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 11451150 (1976).
O. Leseur, R. Pierrat, J. J. Sáenz, and R. Carminati, “Probing two-dimensional Anderson localization without statistics,” Phys. Rev. A 90(5), 053827 (2014).
P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).
A. F. Ioffe and A. R. Regel, “Non-crystalline amorphous and liquid electronic semiconductors,” Prog. Semicond. 4, 237 (1960).
S. E. Skipetrov and I. M. Sokolov, “Absence of Anderson localization of light in a random ensemble of point scatterers,” Phys. Rev. Lett. 112, 023905 (2014).
T. Sperling, L. Schertel, M. Ackermann, G. J. Aubry, C. M. Aegerter, and G. Maret, “Can 3D light localization be reached in ‘white paint’?,” New J. Phys. 18, 013039 (2016).
S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37, 23042306 (2012).
T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52-55 (2007).
K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 10171022 (2012).
P. Lodahl and A. Lagendijk, “Transport of quantum noise through random media,” Phys. Rev. Lett. 94, 153905 (2005).
Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105, 163905 (2010).
R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106, 163902 (2011).
L. Labonté, C. Vanneste, and P. Sebbah, “Localized mode hybridization by fine tuning of two-dimensional random media,” Opt. Lett. 37, 19461948 (2012).
C. Vanneste and P. Sebbah, “Complexity of two-dimensional quasimodes at the transition from weak scattering to Anderson localization,” Phys. Rev. A 79, 041802(R) (2009).
F. Sgrignuoli, G. Mazzamuto, N. Caselli, F. Intonti, F. S. Cataliotti, M. Gurioli, and C. Toninelli, “Necklace state Hallmark in disordered 2D photonic systems,” ACS Photonics 2(11), 16361643 (2015).
F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720725 (2014).
L. Lalouat et al., “Near-field interactions between a subwavelength tip and a smallvolume photonic-crystal nanocavity,” Phys. Rev. B 76, 041102(R) (2007).
A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904 (2005).
K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87, 021108 (2005).
Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944947 (2003).
F. Intonti, N. Caselli, S. Vignolini, F. Riboli, S. Koumar, A. Rastelli, O. G. Schmidt, M. Francardi, A. Gerardino, L. Balet, L. H. Li, A. Fiore, and M. Gurioli, “Mode tuning of photonic crystal nanocavities by photoinduced non-thermal oxidation,” Appl. Phys. Lett. 100, 033116 (2012).
M. Francardi, L. Balet, A. Gerardino, N. Chauvin, D. Bitauld, L. H. Li, B. Alloing, and A. Fiore, “Enhanced spontaneous emission in aphotonic-crystal light-emitting diode,” Appl. Phys. Lett. 93, 143102 (2008).
G. Tarjus, P. Schaaf, and J. Talbot, “Random sequential addition: A distribution function approach,” J. Stat. Phys. 63(1-2), 167202 (1991).
P. D. Garcia, R. Sapienza, C. Toninelli, C. Lopez, and D. S. Wiersma, “Photonic crystals with controlled disorder,” Phys. Rev. A 84, 023813 (2011).
N. Caselli, F. Intonti, C. Bianchi, F. Riboli, S. Vignolini, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Post-fabrication control of evanescent tunnelling in photonic crystal molecules,” Appl. Phys. Lett. 101, 211108 (2012).

Data & Media loading...


Recent innovative applications in disordered photonics would strongly benefit from the possibility to achieve spectral tuning of the individual disorder localized photonic modes without affecting their spatial distributions. Here, we design and fabricate a two-dimensional disordered photonic system, made of a GaAs slab patterned with randomly distributed circular air scattering centers, supporting localized light modes with very small modal volume. The photoluminescence of InAs quantum dots embedded in the slab is used as a probe for near field experiments and gives direct access to the electric field intensity distribution of the localized random modes. We demonstrate that laser assisted oxidation of the GaAs slab performed by near field illumination can be used for a gentle tuning of the individual random modes without modifying the subtle balance leading to light localization given by multiple scattering.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd