Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/4/10.1063/1.4948367
1.
N. Somia and I. M. Verma, “Gene therapy: Trials and tribulations,” Nat. Rev. Genet. 1, 9199 (2000).
http://dx.doi.org/10.1038/35038533
2.
P. J. Carter and R. J. Samulski, “Adeno-associated viral vectors as gene delivery vehicles (review),” Int. J. Mol. Med. 6, 1727 (2000).
http://dx.doi.org/10.3892/ijmm.6.1.17
3.
Y. Yang et al., “Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy,” Proc. Natl. Acad. Sci. U. S. A. 91, 44074411 (1994).
http://dx.doi.org/10.1073/pnas.91.10.4407
4.
S. Hacein-Bey-Abina et al., “LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science 302, 415419 (2003).
http://dx.doi.org/10.1126/science.1088547
5.
F. D. Ledley, “Review nonviral gene therapy: The promise of genes as pharmaceutical products,” Hum. Gene Ther. 6, 11291144 (1995).
http://dx.doi.org/10.1089/hum.1995.6.9-1129
6.
L. Naldini, “Gene therapy returns to centre stage,” Nature 526(7573), 351360 (2015).
http://dx.doi.org/10.1038/nature15818
7.
E. Neumann, M. Schaeferridder, Y. Wang, and P. H. Hofschneider, “Gene-transfer into mouse lyoma cells by electroporation in high electric-fields,” EMBO J. 1, 841845 (1982).
8.
D. Luo and W. M. Saltzman, “Synthetic DNA delivery systems,” Nat. Biotechnol. 18, 3337 (2000).
http://dx.doi.org/10.1038/71889
9.
J. L. Young and D. A. Dean, Electroporation-Mediated Gene Delivery, Advances in Genetics (Elsevier Ltd, 2015), Vol. 89.
10.
U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418, 290291 (2002).
http://dx.doi.org/10.1038/418290a
11.
D. Stevenson et al., “Femtosecond optical transfection of cells: Viability and efficiency,” Opt. Express 14, 71257133 (2006).
http://dx.doi.org/10.1364/oe.14.007125
12.
P. Mthunzi, K. Dholakia, and F. Gunn-Moore, “Phototransfection of mammalian cells using femtosecond laser pulses: Optimization and applicability to stem cell differentiation,” J. Biomed. Opt. 15, 041507 (2010).
http://dx.doi.org/10.1117/1.3430733
13.
A. Uchugonova, K. Konig, R. Bueckle, A. Isemann, and G. Tempea, “Targeted transfection of stem cells with sub-20 femtosecond laser pulses,” Opt. Express 16, 93579364 (2008).
http://dx.doi.org/10.1364/oe.16.009357
14.
A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
http://dx.doi.org/10.1038/srep00858
15.
X. Kong et al., “Comparative analysis of different laser systems to study cellular responses to DNA damage in mammalian cells,” Nucleic Acids Res. 37, e68 (2009).
http://dx.doi.org/10.1093/nar/gkp221
16.
J. Hernandez-Rueda et al., “Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses,” ACS Appl. Mater. Interfaces 12(7), 66136619 (2015).
http://dx.doi.org/10.1021/am508925m
17.
L. Englert, M. Wollenhaupt, C. Sarpe, D. Otto, and T. Baumert, “Morphology of nanoscale structures on fused silica surfaces from interaction with temporally tailored femtosecond pulses,” J. Laser Appl. 24, 15 (2012).
http://dx.doi.org/10.2351/1.3697950
18.
L. Englert, B. Rethfeld, L. Haag, M. Wollenhaupt, and T. Baumert, “Control of ionization processes in high band gap materials via tailored femtosecond pulses,” Opt. Express 15(26), 17855 (2007).
http://dx.doi.org/10.1364/oe.15.017855
19.
D. Abdollahpour, S. Suntsov, D. G. Papazoglou, and S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105(25), 14 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.253901
20.
T. Winkler et al., “Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses Experiments and simulations,” Appl. Surf. Sci. 374, 235242 (2016).
http://dx.doi.org/10.1016/j.apsusc.2015.11.182
21.
M. Wollenhaupt, “Control of ionization processes in high band gap materials,” J. Laser Micro/Nanoeng. 4(3), 144151 (2009).
http://dx.doi.org/10.2961/jlmn.2009.03.0001
22.
M. Wollenhaupt, L. Englert, A. Horn, and T. Baumert, “Temporal femtosecond pulse tailoring for nanoscale laser processing of wide-bandgap materials,” Proc. SPIE 7600, 76000X (2010).
http://dx.doi.org/10.1117/12.840511
23.
J. Köhler, M. Wollenhaupt, T. Bayer, C. Sarpe, and T. Baumert, “Zeptosecond precision pulse shaping,” Opt. Express 19(12), 11638 (2011).
http://dx.doi.org/10.1364/OE.19.011638
24.
H.-S. Chon, G. Park, S.-B. Lee, S. Yoon, J. Kim, J.-H. Lee, and K. An, “Dependence of transverse and longitudinal resolutions on incident Gaussian beam widths in the illumination part of optical scanning microscopy,” J. Opt. Soc. Am. A 24(1), 6067 (2007).
http://dx.doi.org/10.1364/JOSAA.24.000060
25.
R. G. Kessel and C. Y. Shih, Scanning Electron Microscopy in Biology (Springer, Berlin Heidelberg, 1976), Vol. 17.
26.
C. Sarpe, J. Köhler, T. Winkler, M. Wollenhaupt, and T. Baumert, “Real-time observation of transient electron density in water irradiated with tailored femtosecond laser pulses,” New J. Phys. 14, 075021 (2012).
http://dx.doi.org/10.1088/1367-2630/14/7/075021
27.
A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 10151047 (2005).
http://dx.doi.org/10.1007/s00340-005-2036-6
28.
A. A. Davis, M. J. Farrar, N. Nishimura, M. M. Jin, and C. B. Schaffer, “Optoporation and genetic manipulation of cells using femtosecond laser pulses,” Biophys. J. 105(4), 862871 (2013).
http://dx.doi.org/10.1016/j.bpj.2013.07.012
http://aip.metastore.ingenta.com/content/aip/journal/app/1/4/10.1063/1.4948367
Loading
/content/aip/journal/app/1/4/10.1063/1.4948367
Loading

Data & Media loading...

Abstract

We show that spectral phase shaping of fs-laser pulses can be used to optimize laser-cell membrane interactions in water environment. The energy and peak intensity thresholds required for cell poration with single pulse in the nJ range can be significantly reduced (25% reduction in energy and 88% reduction in peak intensity) by using temporal Airy pulses, controlled by positive third order dispersion, as compared to bandwidth limited pulses. Temporal Airy pulses are also effective to control the morphology of the induced pores, with prospective applications from cellular to tissue opto-surgery and transfection.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/4/1.4948367.html;jsessionid=p6K0ekrDW-bJCstICDPHsvHo.x-aip-live-06?itemId=/content/aip/journal/app/1/4/10.1063/1.4948367&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/4/10.1063/1.4948367&pageURL=http://scitation.aip.org/content/aip/journal/app/1/4/10.1063/1.4948367'
Right1,Right2,Right3,