Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/4/10.1063/1.4948417
1.
A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749758 (2012).
http://dx.doi.org/10.1038/nphoton.2012.262
2.
F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839843 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
3.
J. T. Kim, Y.-J. Yu, H. Choi, and C.-G. Choi, “Graphene-based plasmonic photodetector for photonic integrated circuits,” Opt. Express 22, 803808 (2014).
http://dx.doi.org/10.1364/OE.22.000803
4.
F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780793 (2014).
http://dx.doi.org/10.1038/nnano.2014.215
5.
D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” J. Opt. Soc. Am. B 27, 818823 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000818
6.
J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24, 185202 (2013).
http://dx.doi.org/10.1088/0957-4484/24/18/185202
7.
K. J. A. Ooi, H. S. Chu, L. K. Ang, and P. Bai, “Mid-infrared active graphene nanoribbon plasmonic waveguide devices,” J. Opt. Soc. Am. B 30, 31113116 (2013).
http://dx.doi.org/10.1364/JOSAB.30.003111
8.
K. J. A. Ooi, H. S. Chu, P. Bai, and L. K. Ang, “Electro-optical graphene plasmonic logic gates,” Opt. Lett. 39, 16291632 (2014).
http://dx.doi.org/10.1364/OL.39.001629
9.
B. Zhu, G. Ren, Y. Gao, B. Wu, C. Wan, and S. Jian, “Magnetically-controlled logic gates of graphene plasmons based on non-reciprocal coupling,” IEEE J. Sel. Top. Quantum Electron. 22, 17 (2016).
http://dx.doi.org/10.1109/JSTQE.2016.2537209
10.
S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).
http://dx.doi.org/10.1063/1.4879017
11.
R. Beams, P. Bharadwaj, and L. Novotny, “Electroluminescence from graphene excited by electron tunnelling,” Nanotechnology 25, 055206 (2014).
http://dx.doi.org/10.1088/0957-4484/25/5/055206
12.
K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951956 (2015).
http://dx.doi.org/10.1109/TPS.2014.2379259
13.
K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient midinfrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3, 054001 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.3.054001
14.
Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411415 (2011).
http://dx.doi.org/10.1038/nphoton.2011.102
15.
J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20, 35563562 (2012).
http://dx.doi.org/10.1364/OE.20.003556
16.
L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 1439514400 (2010).
http://dx.doi.org/10.1364/OE.18.014395
17.
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165168 (2015).
http://dx.doi.org/10.1126/science.aab2051
18.
Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 30773083 (2009).
http://dx.doi.org/10.1002/adfm.200901007
19.
M. L. Nesterov, J. Bravo-Abad, A. Yu. Nikitin, F. J. García-Vidal, and L. Martin-Moreno, “Graphene supports the propagation of subwavelength optical solitons,” Laser Photonics Rev. 7, L7L11 (2013).
http://dx.doi.org/10.1002/lpor.201200079
20.
K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
http://dx.doi.org/10.1063/1.4895934
21.
D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118, 023105 (2015).
http://dx.doi.org/10.1063/1.4926501
22.
A. V. Gorbach, “Nonlinear graphene plasmonics: Amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.013830
23.
A. V. Gorbach, “Graphene plasmonic waveguides for mid-infrared supercontinuum generation on a chip,” Photonics 2, 825837 (2015).
http://dx.doi.org/10.3390/photonics2030825
24.
T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554559 (2012).
http://dx.doi.org/10.1038/nphoton.2012.147
25.
S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, Jr., “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).
http://dx.doi.org/10.1103/physrevx.3.021014
26.
E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.097401
27.
H. Zhang, S. Virally, Q. Bao, K. P. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 18561858 (2012).
http://dx.doi.org/10.1364/OL.37.001856
28.
J. B. Khurgin, “Graphene—A rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
http://dx.doi.org/10.1063/1.4873704
29.
A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
http://dx.doi.org/10.1063/1.3205115
30.
Y. S. Ang, S. Sultan, and C. Zhang, “Nonlinear optical spectrum of bilayer graphene in the terahertz regime,” Appl. Phys. Lett. 97, 243110 (2010).
http://dx.doi.org/10.1063/1.3527934
31.
S. Sultan, Y. S. Ang, and C. Zhang, “Room temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274 (2012).
http://dx.doi.org/10.1364/josab.29.000274
32.
J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
http://dx.doi.org/10.1088/1367-2630/16/5/053014
33.
J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.235320
34.
B. Simkhovich and G. Bartal, “Plasmon-enhanced four-wave mixing for superresolution applications,” Phys. Rev. Lett. 112, 056802 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.056802
35.
X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.055501
36.
S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.047401
37.
A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131314 (2005).
http://dx.doi.org/10.1016/j.physrep.2004.11.001
38.
L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
http://dx.doi.org/10.1088/1742-6596/129/1/012004
39.
M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245435
40.
R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640644 (2004).
http://dx.doi.org/10.1364/JOSAB.21.000640
41.
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 78067813 (2012).
http://dx.doi.org/10.1021/nn301888e
42.
A. Baron, S. Larouche, D. J. Gauthier, and D. R. Smith, “Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface,” J. Opt. Soc. Am. B 32, 914 (2015).
http://dx.doi.org/10.1364/JOSAB.32.000009
43.
S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 23, 2349423503 (2011).
http://dx.doi.org/10.1364/OE.19.023494
44.
Y. Xu, X. Wang, H. Deng, and K. Guo, “Tunable all-optical plasmonic rectifier in nanoscale metal–insulator–metal waveguides,” Opt. Lett. 39, 58465849 (2014).
http://dx.doi.org/10.1364/OL.39.005846
45.
N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616622 (2015).
http://dx.doi.org/10.1364/OPTICA.2.000616
46.
C. Meng, S. L. Yu, H. Q. Wang, Y. Cao, L. M. Tong, W. T. Liu, and Y. R. Shen, “Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding,” Light Sci. Appl. 4, e348 (2015).
http://dx.doi.org/10.1038/lsa.2015.121
http://aip.metastore.ingenta.com/content/aip/journal/app/1/4/10.1063/1.4948417
Loading
/content/aip/journal/app/1/4/10.1063/1.4948417
Loading

Data & Media loading...

Abstract

Graphene plasmonics provides a unique and excellent platform for nonlinear all-optical switching, owing to its high nonlinear conductivity and tight optical confinement. In this paper, we show that impressive switching performance on graphene plasmonic waveguides could be obtained for both phase and extinction modulations at sub-MW/cm2 optical pump intensities. Additionally, we find that the large surface-induced nonlinearity enhancement that comes from the tight confinement effect can potentially drive the propagating plasmon pump power down to the pW range. The graphene plasmonic waveguides have highly configurable Fermi-levels through electrostatic-gating, allowing for versatility in device design and a broadband optical response. The high capabilities of nonlinear graphene plasmonics would eventually pave the way for the adoption of the graphene plasmonics platform in future all-optical nanocircuitry.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/4/1.4948417.html;jsessionid=hgBR63C9bWgPNMEyevnsZLbO.x-aip-live-03?itemId=/content/aip/journal/app/1/4/10.1063/1.4948417&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/4/10.1063/1.4948417&pageURL=http://scitation.aip.org/content/aip/journal/app/1/4/10.1063/1.4948417'
Right1,Right2,Right3,