Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. N. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749758 (2012).
F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol. 4, 839843 (2009).
J. T. Kim, Y.-J. Yu, H. Choi, and C.-G. Choi, “Graphene-based plasmonic photodetector for photonic integrated circuits,” Opt. Express 22, 803808 (2014).
F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, “Photodetectors based on graphene other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780793 (2014).
D. R. Andersen, “Graphene-based long-wave infrared TM surface plasmon modulator,” J. Opt. Soc. Am. B 27, 818823 (2010).
J. Gosciniak and D. T. H. Tan, “Graphene-based waveguide integrated dielectric-loaded plasmonic electro-absorption modulators,” Nanotechnology 24, 185202 (2013).
K. J. A. Ooi, H. S. Chu, L. K. Ang, and P. Bai, “Mid-infrared active graphene nanoribbon plasmonic waveguide devices,” J. Opt. Soc. Am. B 30, 31113116 (2013).
K. J. A. Ooi, H. S. Chu, P. Bai, and L. K. Ang, “Electro-optical graphene plasmonic logic gates,” Opt. Lett. 39, 16291632 (2014).
B. Zhu, G. Ren, Y. Gao, B. Wu, C. Wan, and S. Jian, “Magnetically-controlled logic gates of graphene plasmons based on non-reciprocal coupling,” IEEE J. Sel. Top. Quantum Electron. 22, 17 (2016).
S. Liu, C. Zhang, M. Hu, X. Chen, P. Zhang, S. Gong, T. Zhao, and R. Zhong, “Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam,” Appl. Phys. Lett. 104, 201104 (2014).
R. Beams, P. Bharadwaj, and L. Novotny, “Electroluminescence from graphene excited by electron tunnelling,” Nanotechnology 25, 055206 (2014).
K. J. A. Ooi, W. S. Koh, H. S. Chu, D. T. H. Tan, and L. K. Ang, “Efficiencies of aloof-scattered electron beam excitation of metal and graphene plasmons,” IEEE Trans. Plasma Sci. 43, 951956 (2015).
K. J. A. Ooi, H. S. Chu, C. Y. Hsieh, D. T. H. Tan, and L. K. Ang, “Highly efficient midinfrared on-chip electrical generation of graphene plasmons by inelastic electron tunnelling excitation,” Phys. Rev. Appl. 3, 054001 (2015).
Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411415 (2011).
J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20, 35563562 (2012).
L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, “Highly sensitive graphene biosensors based on surface plasmon resonance,” Opt. Express 18, 1439514400 (2010).
D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165168 (2015).
Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 30773083 (2009).
M. L. Nesterov, J. Bravo-Abad, A. Yu. Nikitin, F. J. García-Vidal, and L. Martin-Moreno, “Graphene supports the propagation of subwavelength optical solitons,” Laser Photonics Rev. 7, L7L11 (2013).
K. J. A. Ooi, L. K. Ang, and D. T. H. Tan, “Waveguide engineering of graphene’s nonlinearity,” Appl. Phys. Lett. 105, 111110 (2014).
D. Chatzidimitriou, A. Pitilakis, and E. E. Kriezis, “Rigorous calculation of nonlinear parameters in graphene-comprising waveguides,” J. Appl. Phys. 118, 023105 (2015).
A. V. Gorbach, “Nonlinear graphene plasmonics: Amplitude equation for surface plasmons,” Phys. Rev. A 87, 013830 (2013).
A. V. Gorbach, “Graphene plasmonic waveguides for mid-infrared supercontinuum generation on a chip,” Photonics 2, 825837 (2015).
T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photonics 6, 554559 (2012).
S.-Y. Hong, J. I. Dadap, N. Petrone, P.-C. Yeh, J. Hone, and R. M. Osgood, Jr., “Optical third-harmonic generation in graphene,” Phys. Rev. X 3, 021014 (2013).
E. Hendry, P. J. Hale, J. Moger, A. K. Savchenko, and S. A. Mikhailov, “Coherent nonlinear optical response of graphene,” Phys. Rev. Lett. 105, 097401 (2010).
H. Zhang, S. Virally, Q. Bao, K. P. Loh, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of graphene,” Opt. Lett. 37, 18561858 (2012).
J. B. Khurgin, “Graphene—A rather ordinary nonlinear optical material,” Appl. Phys. Lett. 104, 161116 (2014).
A. R. Wright, X. G. Xu, J. C. Cao, and C. Zhang, “Strong nonlinear optical response in graphene in terahertz regime,” Appl. Phys. Lett. 95, 072101 (2009).
Y. S. Ang, S. Sultan, and C. Zhang, “Nonlinear optical spectrum of bilayer graphene in the terahertz regime,” Appl. Phys. Lett. 97, 243110 (2010).
S. Sultan, Y. S. Ang, and C. Zhang, “Room temperature strong terahertz photon mixing in graphene,” J. Opt. Soc. Am. B 29, 274 (2012).
J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third order optical nonlinearity of graphene,” New J. Phys. 16, 053014 (2014).
J. L. Cheng, N. Vermeulen, and J. E. Sipe, “Third-order nonlinearity of graphene: Effects of phenomenological relaxation and finite temperature,” Phys. Rev. B 91, 235320 (2015).
B. Simkhovich and G. Bartal, “Plasmon-enhanced four-wave mixing for superresolution applications,” Phys. Rev. Lett. 112, 056802 (2014).
X. Yao, M. Tokman, and A. Belyanin, “Efficient nonlinear generation of THz plasmons in graphene and topological insulators,” Phys. Rev. Lett. 112, 055501 (2014).
S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131314 (2005).
L. A. Falkovsky, “Optical properties of graphene,” J. Phys.: Conf. Ser. 129, 012004 (2008).
M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21, 640644 (2004).
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 78067813 (2012).
A. Baron, S. Larouche, D. J. Gauthier, and D. R. Smith, “Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface,” J. Opt. Soc. Am. B 32, 914 (2015).
S. Sederberg, D. Driedger, M. Nielsen, and A. Y. Elezzabi, “Ultrafast all-optical switching in a silicon-based plasmonic nanoring resonator,” Opt. Express 23, 2349423503 (2011).
Y. Xu, X. Wang, H. Deng, and K. Guo, “Tunable all-optical plasmonic rectifier in nanoscale metal–insulator–metal waveguides,” Opt. Lett. 39, 58465849 (2014).
N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2, 616622 (2015).
C. Meng, S. L. Yu, H. Q. Wang, Y. Cao, L. M. Tong, W. T. Liu, and Y. R. Shen, “Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding,” Light Sci. Appl. 4, e348 (2015).

Data & Media loading...


Graphene plasmonics provides a unique and excellent platform for nonlinear all-optical switching, owing to its high nonlinear conductivity and tight optical confinement. In this paper, we show that impressive switching performance on graphene plasmonic waveguides could be obtained for both phase and extinction modulations at sub-MW/cm2 optical pump intensities. Additionally, we find that the large surface-induced nonlinearity enhancement that comes from the tight confinement effect can potentially drive the propagating plasmon pump power down to the pW range. The graphene plasmonic waveguides have highly configurable Fermi-levels through electrostatic-gating, allowing for versatility in device design and a broadband optical response. The high capabilities of nonlinear graphene plasmonics would eventually pave the way for the adoption of the graphene plasmonics platform in future all-optical nanocircuitry.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd