Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/5/10.1063/1.4952997
1.
S. Kawata, Jpn. J. Appl. Phys. 52, 010001 (2013).
http://dx.doi.org/10.7567/JJAP.52.010001
2.
P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008).
http://dx.doi.org/10.1021/ar7002804
3.
Y. N. Xia, Y. J. Xiong, B. Lim, and S. E. Skrabalak, Angew. Chem., Int. Ed. 48, 60 (2009).
http://dx.doi.org/10.1002/anie.200802248
4.
J. B. Pendry and D. R. Smith, Phys. Today 57(6), 37 (2004).
http://dx.doi.org/10.1063/1.1784272
5.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
6.
C. M. Soukoulis, S. Linden, and M. Wegener, Science 315, 47 (2007).
http://dx.doi.org/10.1126/science.1136481
7.
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
http://dx.doi.org/10.1126/science.1133628
8.
D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 14, 9794 (2006).
http://dx.doi.org/10.1364/OE.14.009794
9.
H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
http://dx.doi.org/10.1038/nmat2743
10.
N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, Nano Lett. 12, 6328 (2012).
http://dx.doi.org/10.1021/nl303445u
11.
D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, Adv. Mater. 22, 5053 (2010).
http://dx.doi.org/10.1002/adma.201002429
12.
N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
http://dx.doi.org/10.1038/nmat2072
13.
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376 (2008).
http://dx.doi.org/10.1038/nature07247
14.
Z. Sekkat and S. Kawata, Laser Photonics Rev. 8, 1 (2014).
http://dx.doi.org/10.1002/lpor.201200081
15.
S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
http://dx.doi.org/10.1038/35089130
16.
F. Formanek, N. Takeyasu, T. Tanaka, K. Chiyoda, A. Ishikawa, and S. Kawata, Opt. Express 14, 800 (2006).
http://dx.doi.org/10.1364/OPEX.14.000800
17.
Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S. Kawata, Small 5, 1144 (2009).
http://dx.doi.org/10.1002/smll.200801179
18.
J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, and N. J. Halas, Science 328, 1135 (2010).
http://dx.doi.org/10.1126/science.1187949
19.
J. Henzie, M. Grünwald, A. Widmer-Cooper, P. L. Geissler, and P. Yang, Nat. Mater. 11, 131 (2012).
http://dx.doi.org/10.1038/nmat3178
20.
S. Mühlig, A. Cunningham, J. Dintinger, T. Scharf, T. Bürgi, F. Lederer, and C. Rockstuhl, Nanophotonics 2, 211 (2013).
http://dx.doi.org/10.1515/nanoph-2012-0036
21.
T. K. Sau and A. L. Rogach, Adv. Mater. 22, 1781 (2010).
http://dx.doi.org/10.1002/adma.200901271
22.
W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444 (1964).
http://dx.doi.org/10.1063/1.1713333
23.
J. S. Langer, Rev. Mod. Phys. 52, 1 (1980).
http://dx.doi.org/10.1103/RevModPhys.52.1
24.
B. Mandelbrot, Science 156, 636 (1967).
http://dx.doi.org/10.1126/science.156.3775.636
25.
T. Ihle and H. Müller-Krumbhaar, Phys. Rev. E 49, 2972 (1994).
http://dx.doi.org/10.1103/PhysRevE.49.2972
26.
W. Wen, L. Zhou, B. Hou, C. T. Chan, and P. Sheng, Phys. Rev. B 72, 153406 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.153406
27.
F. Miyamaru, Y. Saito, M. W. Takeda, B. Hou, L. Liu, W. Wen, and P. Sheng, Phys. Rev. B 77, 045124 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045124
28.
A. Erzan, L. Pietronero, and A. Vespignani, Rev. Mod. Phys. 67, 545 (1995).
http://dx.doi.org/10.1103/RevModPhys.67.545
29.
A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka, S. Kawata, and K. Fujita, Nat. Protoc. 8, 677 (2013).
http://dx.doi.org/10.1038/nprot.2013.030
30.
X. Zhou and X. P. Zhao, Appl. Phys. Lett. 91, 181908 (2007).
http://dx.doi.org/10.1063/1.2798063
31.
B. Liu, X. P. Zhao, W. Zhu, W. Luo, and X. Cheng, Adv. Funct. Mater. 18, 3523 (2008).
http://dx.doi.org/10.1002/adfm.200800444
32.
X. P. Zhao, J. Mater. Chem. 22, 9439 (2012).
http://dx.doi.org/10.1039/c2jm15979a
33.
See supplementary material at http://dx.doi.org/10.1063/1.4952997 for details of the experimental conditions on growth of silver fractal structures and SERS measurements.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/app/1/5/10.1063/1.4952997
Loading
/content/aip/journal/app/1/5/10.1063/1.4952997
Loading

Data & Media loading...

Abstract

Large-scale metallic three-dimensional (3D) structures composed of sub-wavelength fine details, called metamaterials, have attracted optical scientists and materials scientists because of their unconventional and extraordinary optical properties that are not seen in nature. However, existing nano-fabrication technologies including two-photon fabrication, e-beam, focused ion-beam, and probe microscopy are not necessarily suitable for fabricating such large-scale 3D metallic nanostructures. In this article, we propose a different method of fabricating metamaterials, which is based on a bottom-up approach. We mimicked the generation of wood forest under the sunlight and rain in nature. In our method, a silver nano-forest is grown from the silver seeds (nanoparticles) placed on the glass substrate in silver-ion solution. The metallic nano-forest is formed only in the area where ultraviolet light is illuminated. The local temperature increases at nano-seeds and tips of nano-trees and their branches due to the plasmonic heating as a result of UV light excitation of localized mode of surface plasmon polaritons. We have made experiments of growth of metallic nano-forest patterned by the light distribution. The experimental results show a beautiful nano-forest made of silver with self-similarity. Fractal dimension and spectral response of the grown structure are discussed. The structures exhibit a broad spectral response from ultraviolet to infrared, which was used for surface-enhanced Raman detection of molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/5/1.4952997.html;jsessionid=nqkm2K9R2aSEKLTgUV8Y6ub_.x-aip-live-03?itemId=/content/aip/journal/app/1/5/10.1063/1.4952997&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/5/10.1063/1.4952997&pageURL=http://scitation.aip.org/content/aip/journal/app/1/5/10.1063/1.4952997'
Right1,Right2,Right3,