Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
The Supercontinuum Laser Source, 2nd ed., edited by R. R. Alfano (Springer, New York, 2006).
C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: Probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett. 37, 22652267 (2012).
J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 26012603 (2006).
P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10, 624626 (1985).
S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett. 34, 38393841 (2009).
F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 34563458 (2012).
J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, “Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm,” Opt. Express 21, 2521025220 (2013).
H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40, 10691072 (2015).
O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433438 (2015).
A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3–18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40, 974977 (2015).
T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 33303332 (2007).
P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 19621964 (2010).
T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30, 332334 (2005).
N. M. N. Srinivas, S. S. Harsha, and D. N. Rao, “Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP),” Opt. Express 13, 32243229 (2005).
R. S. S. Kumar, S. S. Harsha, and D. N. Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86, 615621 (2007).
K. Krupa, A. Labruyère, A. Tonello, B. M. Shalaby, V. Couderc, F. Baronio, and A. B. Aceves, “Polychromatic filament in quadratic media: Spatial and spectral shaping of light in crystals,” Optica 2, 10581064 (2015).
B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
B. Zhou, H. Guo, and M. Bache, “Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal,” Opt. Express 23, 69246936 (2015).
L. A. Ostrovskii, “Self-action of light in crystals,” Pis’ma Zh. Eksp. Teor. Fiz. 5, 331 (1967);
L. A. Ostrovskii, JETP Lett. 5, 272275 (1967).
R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 2830 (1992).
X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 17771779 (1999).
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 25052510 (2002).
J. Moses and F. W. Wise, “Soliton compression in quadratic media: High-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 18811883 (2006).
B. Zhou and M. Bache, “Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal,” Opt. Lett. 40, 42574260 (2015).
D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 12871299 (2010).
M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: An efficient source of few-cycle energetic near-to mid-IR pulses,” Opt. Express 19, 2255722562 (2011).
C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 24782480 (2007).
C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 39123914 (2011).
H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion,” Opt. Express 21, 2889228901 (2013).
M. Bache, H. Guo, and B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 16471657 (2013).
S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 19812007 (2004).
M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, “Interaction between optical fields and their conjugates in nonlinear media,” Opt. Express 21, 3123931252 (2013).
M. Bache, “The nonlinear analytical envelope equation in quadratic nonlinear crystals” (2016), e-print arXiv:1603.00188.
J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: Accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494504 (2013).
M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 24902492 (2007).
F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376383 (2004).
G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, and P. DiTrapani, “Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation,” Phys. Rev. A 83, 043834 (2011).
B. Zhou, H. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 11801182 (2002).
M. J. Werner, M. G. Raymer, M. Beck, and P. D. Drummond, “Ultrashort pulsed squeezing by optical parametric amplification,” Phys. Rev. A 52, 42024213 (1995).
M. J. Werner and P. D. Drummond, “Pulsed quadrature-phase squeezing of solitary waves in χ(2) parametric waveguides,” Phys. Rev. A 56, 15081518 (1997).
E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far field spatial quantum correlations in the high gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).

Data & Media loading...


Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS pumped in the 3-4 m range with 85 fs 50 J pulse energy, with the broadest supercontinuum covering 1.6-7.0 m. We measured up 30 J energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd