Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/5/10.1063/1.4953177
1.
The Supercontinuum Laser Source, 2nd ed., edited by R. R. Alfano (Springer, New York, 2006).
2.
C. Calabrese, A. M. Stingel, L. Shen, and P. B. Petersen, “Ultrafast continuum mid-infrared spectroscopy: Probing the entire vibrational spectrum in a single laser shot with femtosecond time resolution,” Opt. Lett. 37, 22652267 (2012).
http://dx.doi.org/10.1364/OL.37.002265
3.
J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1135
4.
B. Prade, M. Franco, A. Mysyrowicz, A. Couairon, H. Buersing, B. Eberle, M. Krenz, D. Seiffer, and O. Vasseur, “Spatial mode cleaning by femtosecond filamentation in air,” Opt. Lett. 31, 26012603 (2006).
http://dx.doi.org/10.1364/OL.31.002601
5.
P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett. 10, 624626 (1985).
http://dx.doi.org/10.1364/OL.10.000624
6.
S. Ashihara and Y. Kawahara, “Spectral broadening of mid-infrared femtosecond pulses in GaAs,” Opt. Lett. 34, 38393841 (2009).
http://dx.doi.org/10.1364/OL.34.003839
7.
F. Silva, D. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Couairon, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nat. Commun. 3, 807 (2012).
http://dx.doi.org/10.1038/ncomms1816
8.
D. Kartashov, S. Ališauskas, A. Pugžlys, A. Voronin, A. Zheltikov, M. Petrarca, P. Béjot, J. Kasparian, J.-P. Wolf, and A. Baltuška, “White light generation over three octaves by femtosecond filament at 3.9 μm in argon,” Opt. Lett. 37, 34563458 (2012).
http://dx.doi.org/10.1364/OL.37.003456
9.
J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, “Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm,” Opt. Express 21, 2521025220 (2013).
http://dx.doi.org/10.1364/OE.21.025210
10.
H. Liang, P. Krogen, R. Grynko, O. Novak, C.-L. Chang, G. J. Stein, D. Weerawarne, B. Shim, F. X. Kärtner, and K.-H. Hong, “Three-octave-spanning supercontinuum generation and sub-two-cycle self-compression of mid-infrared filaments in dielectrics,” Opt. Lett. 40, 10691072 (2015).
http://dx.doi.org/10.1364/OL.40.001069
11.
O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, O. Faucher, and F. Smektala, “Mid-infrared filamentation-induced supercontinuum in As-S and an As-free Ge-S counterpart chalcogenide glasses,” Appl. Phys. B 121, 433438 (2015).
http://dx.doi.org/10.1007/s00340-015-6249-z
12.
A. A. Lanin, A. A. Voronin, E. A. Stepanov, A. B. Fedotov, and A. M. Zheltikov, “Multioctave, 3–18 μm sub-two-cycle supercontinua from self-compressing, self-focusing soliton transients in a solid,” Opt. Lett. 40, 974977 (2015).
http://dx.doi.org/10.1364/OL.40.000974
13.
T. Fuji and T. Suzuki, “Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air,” Opt. Lett. 32, 33303332 (2007).
http://dx.doi.org/10.1364/OL.32.003330
14.
P. B. Petersen and A. Tokmakoff, “Source for ultrafast continuum infrared and terahertz radiation,” Opt. Lett. 35, 19621964 (2010).
http://dx.doi.org/10.1364/OL.35.001962
15.
T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G. Tempea, T. Udem, C. Gohle, T. W. Hänsch, W. Lehnert, M. Scherer, and F. Krausz, “Monolithic carrier-envelope phase-stabilization scheme,” Opt. Lett. 30, 332334 (2005).
http://dx.doi.org/10.1364/OL.30.000332
16.
N. M. N. Srinivas, S. S. Harsha, and D. N. Rao, “Femtosecond supercontinuum generation in a quadratic nonlinear medium (KDP),” Opt. Express 13, 32243229 (2005).
http://dx.doi.org/10.1364/OPEX.13.003224
17.
R. S. S. Kumar, S. S. Harsha, and D. N. Rao, “Broadband supercontinuum generation in a single potassium di-hydrogen phosphate (KDP) crystal achieved in tandem with sum frequency generation,” Appl. Phys. B 86, 615621 (2007).
http://dx.doi.org/10.1007/s00340-006-2519-0
18.
K. Krupa, A. Labruyère, A. Tonello, B. M. Shalaby, V. Couderc, F. Baronio, and A. B. Aceves, “Polychromatic filament in quadratic media: Spatial and spectral shaping of light in crystals,” Optica 2, 10581064 (2015).
http://dx.doi.org/10.1364/OPTICA.2.001058
19.
B. B. Zhou, A. Chong, F. W. Wise, and M. Bache, “Ultrafast and octave-spanning optical nonlinearities from strongly phase-mismatched quadratic interactions,” Phys. Rev. Lett. 109, 043902 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.043902
20.
B. Zhou, H. Guo, and M. Bache, “Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal,” Opt. Express 23, 69246936 (2015).
http://dx.doi.org/10.1364/OE.23.006924
21.
L. A. Ostrovskii, “Self-action of light in crystals,” Pis’ma Zh. Eksp. Teor. Fiz. 5, 331 (1967);
L. A. Ostrovskii, JETP Lett. 5, 272275 (1967).
22.
R. DeSalvo, D. Hagan, M. Sheik-Bahae, G. Stegeman, E. W. Van Stryland, and H. Vanherzeele, “Self-focusing and self-defocusing by cascaded second-order effects in KTP,” Opt. Lett. 17, 2830 (1992).
http://dx.doi.org/10.1364/OL.17.000028
23.
X. Liu, L.-J. Qian, and F. W. Wise, “High-energy pulse compression by use of negative phase shifts produced by the cascaded χ(2) : χ(2) nonlinearity,” Opt. Lett. 24, 17771779 (1999).
http://dx.doi.org/10.1364/OL.24.001777
24.
S. Ashihara, J. Nishina, T. Shimura, and K. Kuroda, “Soliton compression of femtosecond pulses in quadratic media,” J. Opt. Soc. Am. B 19, 25052510 (2002).
http://dx.doi.org/10.1364/JOSAB.19.002505
25.
J. Moses and F. W. Wise, “Soliton compression in quadratic media: High-energy few-cycle pulses with a frequency-doubling crystal,” Opt. Lett. 31, 18811883 (2006).
http://dx.doi.org/10.1364/OL.31.001881
26.
B. Zhou and M. Bache, “Dispersive waves induced by self-defocusing temporal solitons in a beta-barium-borate crystal,” Opt. Lett. 40, 42574260 (2015).
http://dx.doi.org/10.1364/OL.40.004257
27.
D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 12871299 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.1287
28.
M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation in ultrafast cascaded second-harmonic generation,” Phys. Rev. A 82, 063806 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.063806
29.
M. Bache, O. Bang, B. B. Zhou, J. Moses, and F. W. Wise, “Optical Cherenkov radiation by cascaded nonlinear interaction: An efficient source of few-cycle energetic near-to mid-IR pulses,” Opt. Express 19, 2255722562 (2011).
http://dx.doi.org/10.1364/OE.19.022557
30.
C. Langrock, M. M. Fejer, I. Hartl, and M. E. Fermann, “Generation of octave-spanning spectra inside reverse-proton-exchanged periodically poled lithium niobate waveguides,” Opt. Lett. 32, 24782480 (2007).
http://dx.doi.org/10.1364/OL.32.002478
31.
C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett. 36, 39123914 (2011).
http://dx.doi.org/10.1364/OL.36.003912
32.
H. Suchowski, P. R. Krogen, S.-W. Huang, F. X. Kärtner, and J. Moses, “Octave-spanning coherent mid-IR generation via adiabatic difference frequency conversion,” Opt. Express 21, 2889228901 (2013).
http://dx.doi.org/10.1364/OE.21.028892
33.
M. Bache, H. Guo, and B. Zhou, “Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals,” Opt. Mater. Express 3, 16471657 (2013).
http://dx.doi.org/10.1364/OME.3.001647
34.
S. Fossier, S. Salaün, J. Mangin, O. Bidault, I. Thénot, J.-J. Zondy, W. Chen, F. Rotermund, V. Petrov, P. Petrov, J. Henningsen, A. Yelisseyev, L. Isaenko, S. Lobanov, O. Balachninaite, G. Slekys, and V. Sirutkaitis, “Optical, vibrational, thermal, electrical, damage, and phase-matching properties of lithium thioindate,” J. Opt. Soc. Am. B 21, 19812007 (2004).
http://dx.doi.org/10.1364/JOSAB.21.001981
35.
M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010).
http://dx.doi.org/10.1103/PhysRevA.81.053841
36.
M. Conforti, A. Marini, T. X. Tran, D. Faccio, and F. Biancalana, “Interaction between optical fields and their conjugates in nonlinear media,” Opt. Express 21, 3123931252 (2013).
http://dx.doi.org/10.1364/OE.21.031239
37.
M. Bache, “The nonlinear analytical envelope equation in quadratic nonlinear crystals” (2016), e-print arXiv:1603.00188.
38.
J. Moses and F. W. Wise, “Controllable self-steepening of ultrashort pulses in quadratic nonlinear media,” Phys. Rev. Lett. 97, 073903 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.073903
39.
H. Guo, X. Zeng, B. Zhou, and M. Bache, “Nonlinear wave equation in frequency domain: Accurate modeling of ultrafast interaction in anisotropic nonlinear media,” J. Opt. Soc. Am. B 30, 494504 (2013).
http://dx.doi.org/10.1364/JOSAB.30.000494
40.
M. Bache, O. Bang, J. Moses, and F. W. Wise, “Nonlocal explanation of stationary and nonstationary regimes in cascaded soliton pulse compression,” Opt. Lett. 32, 24902492 (2007).
http://dx.doi.org/10.1364/OL.32.002490
41.
F. Ö. Ilday, K. Beckwitt, Y.-F. Chen, H. Lim, and F. W. Wise, “Controllable Raman-like nonlinearities from nonstationary, cascaded quadratic processes,” J. Opt. Soc. Am. B 21, 376383 (2004).
http://dx.doi.org/10.1364/JOSAB.21.000376
42.
G. Valiulis, V. Jukna, O. Jedrkiewicz, M. Clerici, E. Rubino, and P. DiTrapani, “Propagation dynamics and X-pulse formation in phase-mismatched second-harmonic generation,” Phys. Rev. A 83, 043834 (2011).
http://dx.doi.org/10.1103/PhysRevA.83.043834
43.
B. Zhou, H. Guo, and M. Bache, “Soliton-induced nonlocal resonances observed through high-intensity tunable spectrally compressed second-harmonic peaks,” Phys. Rev. A 90, 013823 (2014).
http://dx.doi.org/10.1103/PhysRevA.90.013823
44.
J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 11801182 (2002).
http://dx.doi.org/10.1364/OL.27.001180
45.
M. J. Werner, M. G. Raymer, M. Beck, and P. D. Drummond, “Ultrashort pulsed squeezing by optical parametric amplification,” Phys. Rev. A 52, 42024213 (1995).
http://dx.doi.org/10.1103/PhysRevA.52.4202
46.
M. J. Werner and P. D. Drummond, “Pulsed quadrature-phase squeezing of solitary waves in χ(2) parametric waveguides,” Phys. Rev. A 56, 15081518 (1997).
http://dx.doi.org/10.1103/PhysRevA.56.1508
47.
E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato, “Simultaneous near-field and far field spatial quantum correlations in the high gain regime of parametric down-conversion,” Phys. Rev. A 69, 023802 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.023802
http://aip.metastore.ingenta.com/content/aip/journal/app/1/5/10.1063/1.4953177
Loading
/content/aip/journal/app/1/5/10.1063/1.4953177
Loading

Data & Media loading...

Abstract

Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS pumped in the 3-4 m range with 85 fs 50 J pulse energy, with the broadest supercontinuum covering 1.6-7.0 m. We measured up 30 J energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/5/1.4953177.html;jsessionid=4FiWyuHqjwMVD-95yo8ztnXw.x-aip-live-06?itemId=/content/aip/journal/app/1/5/10.1063/1.4953177&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/5/10.1063/1.4953177&pageURL=http://scitation.aip.org/content/aip/journal/app/1/5/10.1063/1.4953177'
Right1,Right2,Right3,