Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205213 (2010).
D. O’Connor and A. V. Zayats, “Data storage: The third plasmonic revolution,” Nat. Nanotechnol. 5, 482483 (2010).
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 15781586 (2008).
K. Appavoo, B. Wang, N. F. Brady, M. Seo, J. Nag, R. P. Prasankumar, D. J. Hilton, S. T. Pantelides, and R. F. Haglund, Jr., “Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection,” Nano Lett. 14, 11271133 (2014).
S. Grillanda and F. Morichetti, “Light-induced metal-like surface of silicon photonic waveguides,” Nat. Commun. 6, 8182 (2015).
P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 72387248 (2006).
S. Neatu, J. A. Macia-Agullo, P. Concepcion, and H. Garcia, “Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water,” J. Am. Chem. Soc. 136, 1596915976 (2014).
N. Passarelli, L. A. Perez, and E. A. Coronado, “Plasmonic interactions: From molecular plasmonics and fano resonances to ferroplasmons,” ACS Nano 8, 97239728 (2014).
C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
C. Dahmen, B. Schmidt, and G. von Plessen, “Radiation damping in metal nanoparticle pairs,” Nano Lett. 7, 318322 (2007).
O. Pena-Rodriguez and U. Pal, “Au@Ag core-shell nanoparticles: Efficient all-plasmonic Fano-resonance generators,” Nanoscale 3, 3609 (2011).
L. Wang, Z. Clavero, C. Huba, K. J. Carroll, E. E. Carpenter, D. Gu, and R. A. Lukaszew, “Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles,” Nano Lett. 11, 12371240 (2011).
D. Meneses-Rodriguez, E. Ferreiro-Vila, P. Prieto, J. Anguita, M. U. Gonzalez, J. M. Garcia-Martin, A. Cebollada, A. Garcia-Martin, and G. Armelles, “Probing the electromagnetic field distribution within a metallic nanodisk,” Small 7, 33173323 (2011).
G. A. Sotiriou, A. M. Hirt, P. Y. Lozach, A. Teleki, F. Krumeich, and S. E. Pratsinis, “Hybrid, silica-coated, janus-like plasmonic-magnetic nanoparticles,” Chem. Mater. 23, 19851992 (2011).
Y. Sato, S. Naya, and H. Tada, “A new bimetallic plasmonic photocatalyst consisting of gold(core)-copper(shell) nanoparticle and titanium(IV) oxide support,” APL Mater. 3, 104502 (2015).
A. J. McGrath, Y. H. Chien, S. Cheong, D. A. J. Herman, J. Watt, A. M. Henning, L. Gloag, C. S. Yeh, and R. D. Tilley, “Gold over branched palladium nanostructures for photothermal cancer therapy,” ACS Nano 9, 1228312291 (2015).
B. N. Khlebtsov, Z. Liu, J. Ye, and N. G. Khlebtsov, “Au@ag core/shell cuboids and dumbbells: Optical properties and sers response,” J. Quant. Spectrosc. Radiat. Transfer 167, 6475 (2015).
G. Armelles, A. Cebollada, A. Garcia-Martin, J. M. Garcia-Martin, M. U. Gonzalez, J. B. Gonzalez-Diaz, E. Ferreiro-Vila, and J. F. Torrado, “Magnetoplasmonic nanostructures: Systems supporting both plasmonic and magnetic properties,” J. Opt. A: Pure Appl. Opt. 11, 114023 (2009).
H. Krishna, J. Strader, A. K. Gangopadhyay, and R. Kalyanaraman, “Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy,” J. Magn. Magn. Mater. 323, 356362 (2011).
R. Sachan, S. Yadavali, N. Shirato, H. Krishna, V. Ramos, G. Duscher, S. J. Pennycook, A. K. Gangopadhyay, H. Garcia, and R. Kalyanaraman, “Self-organized bimetallic Ag-Co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity,” Nanotechnology 23, 275604 (2012).
R. Sachan, V. Ramos, A. Malasi, B. Bartley, G. Duscher, and R. Kalyanaraman, “Oxidation resistant Ag nanoparticles for ultrastable plasmonic applications,” Adv. Mater. 25, 20452050 (2013).
R. Sachan, A. Malasi, J. Ge, S. Yadavali, H. Krishna, A. Gangopadhyay, H. Garcia, G. Duscher, and R. Kalyanaraman, “Ferroplasmons: Intense localized surface plasmons in metal-ferromagnetic nanoparticles,” ACS Nano 8, 97909798 (2014).
R. Sachan, A. Malasi, S. Yadavali, B. Griffey, J. Dunlap, G. Duscher, and R. Kalyanaraman, “Laser induced self-assembled nanostructures on electron transparent substrates,” Part. Part. Syst. Charact. 32, 476482 (2015).
A. Malasi, R. Sachan, V. Ramos, H. Garcia, G. Duscher, and R. Kalaynaraman, “Localized surface plasmon sensing based investigation of nanoscale metal oxidation kinetics,” Nanotechnology 26, 205701 (2015).
H. Krishna, N. Shirato, S. Yadavali, R. Sachan, J. Strader, and R. Kalyanaraman, “Self-organization of nanoscale multilayer liquid metal films: Experiment and theory,” ACS Nano 5, 470476 (2011).
H. Garcia, R. Sachan, and R. Kalyanaraman, “Optical plasmon properties of Co-Ag nanocomposites within the mean-field approximation,” Plasmonics 7, 137141 (2012).
M. Blaber, M. Arnold, and M. Ford, “A review of the optical properties of alloys and intermetallics for plasmonics,” J. Phys.: Condens. Matter 22, 143201 (2010).
P. Offermans, S. R. K. Schaafsma, M. C. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. G. Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano 5, 51515157 (2011).
H. Garcia, J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Self-consistent determination of plasmonic resonances in ternary nanocomposites,” Phys. Rev. B 75, 045439 (2007).
A. Malasi, R. Kalyanaraman, and H. Garcia, “From Mie to Fresnel through effective medium approximation with multipole contributions,” J. Opt. 16(6), 065001 (2014).
E. J. Heilweil and R. M. Hochstrasser, “Nonlinear spectroscopy and picosecond transient grating study of colloidal gold,” J. Chem. Phys. 82, 47624770 (1985).
P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev. 4, 795808 (2010).
S. Link and M. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 84108426 (1999).
S. Link and M. A. El-Sayed, “Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals,” Int. Rev. Phys. Chem. 19, 409453 (2000).
A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surfcae-enhanced raman-scattering,” Phys. Rev. Lett. 48, 957960 (1982).
A. Malasi, J. Ge, C. Carr, H. Garcia, G. Duscher, and R. Kalyanaraman, “Two-dimensionally ordered plasmonic and magnetic nanostructures on transferable electron transparent substrates,” Part. Part. Syst. Charact. 32, 970978 (2015).
K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar excitation in triangular nanoprisms,” J. Chem. Phys. 123, 114713 (2005).
J. R. Lakowicz, “Radiative decay engineering: Biophysical and biomedical applications,” Anal. Biochem. 298, 124 (2001).
Q. Hao, D. Du, C. Wang, W. Li, H. Huang, J. Li, T. Qiu, and P. K. Chu, “Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates,” Sci. Rep. 4, 6014 (2014).
K. L. Tsakmakidis, M. S. Wartak, J. J. H. Cook, J. M. Hamm, and O. Hess, “Negative-permeability electromagnetically induced transparent and magnetically active metamaterials,” Phys. Rev. B 81, 195128 (2010).
X. Meng and D. Qiu, “Gas-flow-induced reorientation to centimeter-sized two-dimensional colloidal single crystal of polystyrene particle,” Langmuir 30, 30193023 (2014).
N. Vogel, S. Goerres, K. Landfester, and C. K. Weiss, “A convenient method to produce close-and non-close-packed monolayers using direct assembly at the air-water interface and subsequent plasma-induced size reduction,” Macromol. Chem. Phys. 212, 17191734 (2011).
P. Moitra, B. A. Slovick, W. Li, I. I. Kravchencko, D. P. Briggs, S. Krishnamurthy, and J. Valentine, “Large-scale all-dielectric metamaterial perfect reflectors,” ACS Photonics 2, 692698 (2015).

Data & Media loading...


Plasmonic nanoparticles are amongst the most effective ways to resonantly couple optical energy into and out of nanometer sized volumes. However, controlling and/or tuning the transfer of this incident energy to the surrounding near and far field is one of the most interesting challenges in this area. Due to the dielectric properties of metallic silver (Ag), its nanoparticles have amongst the highest radiative quantum efficiencies (), i.e., the ability to radiatively transfer the incident energy to the surrounding. Here we report the discovery that bimetallic nanoparticles of Ag made with immiscible and plasmonically weak Co metal can show comparable and/or even higher values. The enhancement is a result of the narrowing of the plasmon bandwidth from these bimetal systems. The phenomenological explanation of this effect based on the dipolar approximation points to the reduction in radiative losses within the Ag nanoparticles when in contact with cobalt. This is also supported by a model of coupling between poor and good conductors based on the surface to volume ratio. This study presents a new type of bandwidth engineering, one based on using bimetal nanostructures, to tune and/or enhance the quality factor and quantum efficiency for near and far-field plasmonic applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd