Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/7/10.1063/1.4954771
1.
M. Tonouchi, Nat. Photonics 1(2), 97105 (2007).
http://dx.doi.org/10.1038/nphoton.2007.3
2.
G. C. Valley, Opt. Exp. 15(5), 19551982 (2007).
http://dx.doi.org/10.1364/OE.15.001955
3.
E. S. Harmon, M. R. Melloch, J. M. Woodall, D. D. Nolte, N. Otsuka, and C. L. Chang, Appl. Phys. Lett. 63(16), 22482250 (1993).
http://dx.doi.org/10.1063/1.110542
4.
Z. Liliental-Weber, H. J. Cheng, S. Gupta, J. Whitaker, K. Nichols, and F. W. Smith, J. Electron. Mater. 22(12), 14651469 (1993).
http://dx.doi.org/10.1007/BF02650000
5.
H. Němec, A. Pashkin, P. Kužel, M. Khazan, S. Schnüll, and I. Wilke, J. Appl. Phys. 90(3), 13031306 (2001).
http://dx.doi.org/10.1063/1.1380414
6.
A. Fekecs, M. Bernier, D. Morris, M. Chicoine, F. Schiettekatte, P. Charette, and R. Arès, Opt. Mater. Exp. 1(7), 1165 (2011).
http://dx.doi.org/10.1364/OME.1.001165
7.
A. Takazato, M. Kamakura, T. Matsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91(1), 011102 (2007).
http://dx.doi.org/10.1063/1.2754370
8.
H. H. Tan and C. Carmody, Appl. Phys. Lett. 82(22), 39133915 (2003).
http://dx.doi.org/10.1063/1.1579565
9.
D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, Appl. Phys. Lett. 86(5), 051908 (2005).
http://dx.doi.org/10.1063/1.1852092
10.
N. Chimot, J. Mangeney, L. Joulaud, P. Crozat, H. Bernas, K. Blary, and J. F. Lampin, Appl. Phys. Lett. 87(19), 193510 (2005).
http://dx.doi.org/10.1063/1.2126110
11.
B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Exp. 16(13), 9565 (2008).
http://dx.doi.org/10.1364/OE.16.009565
12.
H. Erlig, S. Wang, T. Azfar, A. Udupa, H. R. Fetterman, and D. C. Streit, Electron. Lett. 35(2), 173174 (1999).
http://dx.doi.org/10.1049/el:19990109
13.
T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett. 97(20), 201110 (2010).
http://dx.doi.org/10.1063/1.3519480
14.
J.-M. Rämer, F. Ospald, G. von Freymann, and R. Beigang, Appl. Phys. Lett. 103(2), 021119 (2013).
http://dx.doi.org/10.1063/1.4813605
15.
M. Tani, K.-S. Lee, and X.-C. Zhang, Appl. Phys. Lett. 77(9), 13961398 (2000).
http://dx.doi.org/10.1063/1.1289914
16.
S. U. Dankowski, D. Streb, M. Ruff, P. Kiesel, M. Kneissl, B. Knüpfer, G. H. Döhler, U. D. Keil, C. B. Sørenson, and A. K. Verma, Appl. Phys. Lett. 68(1), 3739 (1996).
http://dx.doi.org/10.1063/1.116748
17.
S. U. Dankowski, P. Kiesel, M. Ruff, D. Streb, S. Tautz, U. D. Keil, C. B. Sørensen, B. Knüpfer, M. Kneissl, and G. H. Döhler, Mater. Sci. Eng.: B 44(1-3), 316319 (1997).
http://dx.doi.org/10.1016/S0921-5107(96)01748-5
18.
E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, Appl. Phys. Lett. 99(22), 223508 (2011).
http://dx.doi.org/10.1063/1.3664635
19.
E. Peytavit, P. Latzel, F. Pavanello, G. Ducournau, and J.-F. Lampin, IEEE Electron Device Lett. 34(10), 12771279 (2013).
http://dx.doi.org/10.1109/LED.2013.2277574
20.
E. Peytavit, F. Pavanello, G. Ducournau, and J.-F. Lampin, Appl. Phys. Lett. 103(20), 201107 (2013).
http://dx.doi.org/10.1063/1.4830360
21.
M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am. 73(9), 1105 (1983).
http://dx.doi.org/10.1364/JOSA.73.001105
22.
P. Lalanne and G. Michael Morris, J. Opt. Soc. Am. A 13(4), 779 (1996).
http://dx.doi.org/10.1364/JOSAA.13.000779
23.
E. Peytavit, C. Coinon, and J. F. Lampin, J. Appl. Phys. 109(1), 016101 (2011).
http://dx.doi.org/10.1063/1.3525709
24.
E. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic Press, 1998), ISBN: 9780080533780.
25.
E. Peytavit, J.-F. Lampin, F. Hindle, C. Yang, and G. Mouret, Appl. Phys. Lett. 95(16), 161102 (2009).
http://dx.doi.org/10.1063/1.3251071
26.
E. Rosencher and B. Vinter, Optoelectronics (Cambridge University Press, 2002).
http://aip.metastore.ingenta.com/content/aip/journal/app/1/7/10.1063/1.4954771
Loading
/content/aip/journal/app/1/7/10.1063/1.4954771
Loading

Data & Media loading...

Abstract

We show that photoconductors based on low-temperature-grown GaAs (LT-GaAs) can be efficiently operated by 1.55 m telecom wavelength by using metallic mirror based optical cavities. Two different semi-transparent front mirrors are compared: the first one is a thin gold layer, whereas the second one consists of a gold grating. Light absorption in grating mirror based optical cavities is numerically, analytically, and experimentally investigated allowing for an appropriate optical design. We show a 3 times improvement of the LT-GaAs photoconductor photoresponse by using, as front mirror, the gold grating once compared with the thin gold layer. It reaches around 0.5 mA/W under continuous wave, whereas a transient photoresistivity () as low as 5 Ω is deduced from dc photocurrents measured under femtosecond pulsed laser excitation. This work paves the way to efficient and reliable optoelectronics systems for GHz or THz waves sampling driven by 1.55 m pulsed lasers widely available.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/7/1.4954771.html;jsessionid=3BkM57-5F00Cn-FMOCBpQIvZ.x-aip-live-03?itemId=/content/aip/journal/app/1/7/10.1063/1.4954771&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/7/10.1063/1.4954771&pageURL=http://scitation.aip.org/content/aip/journal/app/1/7/10.1063/1.4954771'
Right1,Right2,Right3,