Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/7/10.1063/1.4955002
1.
R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, “Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,” Phys. Rev. Lett. 12, 592 (1964).
http://dx.doi.org/10.1103/PhysRevLett.12.592
2.
Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137, A1787 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A1787
3.
R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285 (2011).
http://dx.doi.org/10.1364/OE.19.008285
4.
H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369 (2012); e-print arXiv:1112.2196.
http://dx.doi.org/10.1038/nphoton.2012.109
5.
J. Li, H. Lee, and K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287 (2014).
http://dx.doi.org/10.1364/OL.39.000287
6.
R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics 9, 199 (2015), e-print arXiv:1407.4977.
http://dx.doi.org/10.1038/nphoton.2015.11
7.
P. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X 2, 011008 (2012).
http://dx.doi.org/10.1103/physrevx.2.011008
8.
B. Eggleton, C. Poulton, and R. Pant, “Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits,” Adv. Opt. Photonics 536587 (2013).
http://dx.doi.org/10.1364/aop.5.000536
9.
E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463 (2015).
http://dx.doi.org/10.1038/nphoton.2016.112
10.
R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photonics Rev. 8, 653 (2014).
http://dx.doi.org/10.1002/lpor.201300154
11.
R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.5244
12.
P. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett. 26, 1195 (1990).
http://dx.doi.org/10.1049/el:19900773
13.
C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in integrated photonic waveguides: Forces, scattering mechanisms, and coupled-mode analysis,” Phys. Rev. A: At., Mol., Opt. Phys. 92, 1 (2015); e-print arXiv:1407.3521.
http://dx.doi.org/10.1103/PhysRevA.92.013836
14.
COMSOL Multiphysics v5.0.
15.
A. N. Cleland, Foundations of Nanomechanics (Springer Science & Business Media, 2003), ISBN: 978-3-540-43661-4.
16.
V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209 (2004).
http://dx.doi.org/10.1364/OL.29.001209
17.
S. R. Mirnaziry, C. Wolff, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Stimulated Brillouin scattering in silicon/chalcogenide slot waveguides,” Opt. Express 24, 4786 (2016).
http://dx.doi.org/10.1364/OE.24.004786
18.
R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Analysis of enhanced stimulated Brillouin scattering in silicon slot waveguides,” Opt. Lett. 39, 1242 (2014); e-print arXiv:1310.5893v2.
http://dx.doi.org/10.1364/OL.39.001242
19.
A. Butsch, M. S. Kang, T. G. Euser, J. R. Koehler, S. Rammler, R. Keding, and P. S. Russell, “Optomechanical nonlinearity in dual-nanoweb structure suspended inside capillary fiber,” Phys. Rev. Lett. 109, 183904 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.183904
20.
A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
21.
S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002).
http://dx.doi.org/10.1103/PhysRevE.65.066611
22.
P. T. Rakich, P. Davids, and Z. Wang, “Tailoring optical forces in waveguides through radiation pressure and electrostrictive forces,” Opt. Express 18, 14439 (2010).
http://dx.doi.org/10.1364/OE.18.014439
23.
See supplementary material at http://dx.doi.org/10.1063/1.4955002 for details on mechanical radiation and confinement and the Brillouin gain’s dependence on waveguide geometry.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/app/1/7/10.1063/1.4955002
Loading
/content/aip/journal/app/1/7/10.1063/1.4955002
Loading

Data & Media loading...

Abstract

We numerically study silicon waveguides on silica showing that it is possible to simultaneously guide optical and acoustic waves in the technologically important silicon on insulator (SOI) material system. Thin waveguides, or fins, exhibit geometrically softened mechanical modes at gigahertz frequencies with phase velocities below the Rayleigh velocity in glass, eliminating acoustic radiation losses. We propose slot waveguides on glass with telecom optical frequencies and strong radiation pressure forces resulting in Brillouin gains on the order of 500 and 50 000 W−1m−1 for backward and forward Brillouin scattering, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/7/1.4955002.html;jsessionid=xX-SbL-Yn_7aJX4Frl2hIC2_.x-aip-live-02?itemId=/content/aip/journal/app/1/7/10.1063/1.4955002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/7/10.1063/1.4955002&pageURL=http://scitation.aip.org/content/aip/journal/app/1/7/10.1063/1.4955002'
Right1,Right2,Right3,