Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/app/1/7/10.1063/1.4955178
1.
R.-J. Essiambre, G. J. Foschini, G. Kramer, and P. J. Winzer, “Capacity limits of information transport in fiber-optic networks,” Phys. Rev. Lett. 101(16), 163901 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.163901
2.
A. Chraplyvy, presented at the 35th European Conference on Optical Communication, ECOC ’09, 2009.
3.
D. J. Richardson, “Filling the light pipe,” Science 330(6002), 327328 (2010).
http://dx.doi.org/10.1126/science.1191708
4.
C. A. Brackett, “Dense wavelength division multiplexing networks: Principles and applications,” IEEE J. Sel. Areas Commun. 8(6), 948964 (1990).
http://dx.doi.org/10.1109/49.57798
5.
T. Li, “The impact of optical amplifiers on long-distance lightwave telecommunications,” Proc. IEEE 81, 15681579 (1993).
http://dx.doi.org/10.1109/5.247728
6.
X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880888 (2008).
http://dx.doi.org/10.1364/OE.16.000880
7.
P. J. Winzer, “Energy-efficient optical transport capacity scaling through spatial multiplexing,” IEEE Photonics Technol. Lett. 23(13), 851853 (2011).
http://dx.doi.org/10.1109/LPT.2011.2140103
8.
P. J. Winzer, “Optical networking beyond WDM,” IEEE Photonics J. 4, 647651 (2012).
http://dx.doi.org/10.1109/JPHOT.2012.2189379
9.
D. Richardson, J. Fini, and L. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354362 (2013).
http://dx.doi.org/10.1038/nphoton.2013.94
10.
G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: The next frontier in optical communication,” Adv. Opt. Photonics 6(4), 175 (2014).
http://dx.doi.org/10.1364/aop.6.000413
11.
Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: Proposal and design principle,” IEICE Electron. Exp. 6, 522528 (2009).
http://dx.doi.org/10.1587/elex.6.522
12.
R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in Proceedings of Optical Fiber Communication, PDP10, 2011.
13.
E. Ip, M.-J. Li, K. Bennett, Y.-K. Huang, A. Tanaka, A. Korolev, K. Koreshkov, W. Wood, E. Mateo, J. Hu, and Y. Yano, “146 λ × 6 × 19-Gbaud wavelength-and mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” J. Lightwave Technol. 32(4), 790797 (2014).
http://dx.doi.org/10.1109/JLT.2013.2290434
14.
E. Desurvire, Erbium-Doped Fibre Amplifiers: Principles and Applications (John Wiley, New York, 1994).
15.
Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. Giles, J. Sahu, F. Poletti, L. Grüner-Nielsen, and D. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express 19(26), B952B957 (2011).
http://dx.doi.org/10.1364/OE.19.00B952
16.
N. Bai, E. Ip, T. Wang, and G. Li, “Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump,” Opt. Express 19(17), 1660116611 (2011).
http://dx.doi.org/10.1364/OE.19.016601
17.
E. Ip, N. Bai, Y. Huang, E. Mateo, F. Yaman, S. Bickham, H. Tam, C. Lu, M. Li, S. Ten, A. P. T. Lau, V. Tse, G. Peng, C. Montero, X. Prieto, and G. Li, “88 × 3 × 112-Gb/s WDM transmission over 50-km of three-mode fiber with inline multimode fiber amplifier,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.C.2.
18.
Y. Jung, E. L. Lim, Q. Kang, T. C. May-Smith, N. H. L. Wong, R. Standish, F. Poletti, J. K. Sahu, S. U. Alam, and D. J. Richardson, “Cladding pumped few-mode EDFA for mode division multiplexed transmission,” Opt. Express 22(23), 2900829013 (2014).
http://dx.doi.org/10.1364/OE.22.029008
19.
G. Le Cocq, L. Bigot, A. Le Rouge, M. Bigot-Astruc, P. Sillard, C. Koebele, M. Salsi, and Y. Quiquempois, “Modeling and characterization of a few-mode EDFA supporting four mode groups for mode division multiplexing,” Opt. Express 20(24), 2705127061 (2012).
http://dx.doi.org/10.1364/OE.20.027051
20.
H. Wen, Y. Alahmadi, P. LiKamwa, C. Xia, C. Carboni, and G. Li, “Four-mode semiconductor optical amplifier,” Proc SPIE 9774, 977406 (2016).
http://dx.doi.org/10.1117/12.2204942
21.
J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall, Englewood, NJ, 1995).
22.
G. Milione, E. Ip, M. Li, J. Stone, G. Peng, and T. Wang, “Spatial mode analysis of an elliptical-core, few-mode, optical fiber for MIMO-less space-division-multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W1F.3.
23.
E. Ip, G. Milione, M.-J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5 km elliptical-core few-mode fiber,” Opt. Express 23, 1712017126 (2015).
http://dx.doi.org/10.1364/OE.23.017120
24.
N. A. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Lightwave Technol. 6(4), 531544 (1988).
http://dx.doi.org/10.1109/50.4035
25.
A. Borghesani, “Semicounductor optical amplifiers for advanced optical applications,” inProceedings of International Conference on Transparent Optical Networks, Tu.C1.3, 2006.
26.
K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 14281435 (2000).
http://dx.doi.org/10.1109/2944.902198
http://aip.metastore.ingenta.com/content/aip/journal/app/1/7/10.1063/1.4955178
Loading
/content/aip/journal/app/1/7/10.1063/1.4955178
Loading

Data & Media loading...

Abstract

We demonstrate the first few-mode semiconductor optical amplifier (FM SOA) that supports up to four waveguide modes. We show that each of the modes are confined to the waveguide, overlapping the quantum wells with approximately the same amount, leading to equalized gain for each of the four waveguide modes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/app/1/7/1.4955178.html;jsessionid=9dHxvoh8ZddMilMApoeMvy82.x-aip-live-06?itemId=/content/aip/journal/app/1/7/10.1063/1.4955178&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/app
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=app.aip.org/1/7/10.1063/1.4955178&pageURL=http://scitation.aip.org/content/aip/journal/app/1/7/10.1063/1.4955178'
Right1,Right2,Right3,