Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444(7119), 597 (2006).
H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, Nat. Photonics 2(5), 295 (2008).
H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, Nat. Photonics 3(3), 148 (2009).
A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O’Hara, Appl. Phys. Lett. 92(1), 011119 (2008).
D. Shrekenhamer, W.-C. Chen, and W. J. Padilla, Phys. Rev. Lett. 110(17), 177403 (2013).
S. Savo, D. Shrekenhamer, and W. J. Padilla, Adv. Opt. Mater. 2(3), 275 (2014).
Y. Wu, C. La-o-vorakiat, X. Qiu, J. Liu, P. Deorani, K. Banerjee, J. Son, Y. Chen, E. E. M. Chia, and H. Yang, Adv. Mater. 27(11), 1874 (2015).
S. Shi, B. Zeng, H. Han, X. Hong, H.-Z. Tsai, H. S. Jung, A. Zettl, M. F. Crommie, and F. Wang, Nano Lett. 15, 372 (2014).
T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, Appl. Phys. Lett. 84(18), 3555 (2004).
T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, J. Appl. Phys. 105(9), 093707 (2009).
B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, Nat. Commun. 3, 780 (2012).
P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, ACS Nano 6(10), 9118 (2012).
Q.-Y. Wen, W. Tian, Q. Mao, Z. Chen, W.-W. Liu, Q.-H. Yang, M. Sanderson, and H.-W. Zhang, Sci. Rep. 4, 7409 (2014).
Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, Sci. Rep. 6, 22899 (2016).
B. Zhang, T. He, J. Shen, Y. Hou, Y. Hu, M. Zang, T. Chen, S. Feng, F. Teng, and L. Qin, Opt. Lett. 39(21), 6110 (2014).
T. He, B. Zhang, G.-c. Wang, Y.-b. Hou, and J.-l. Shen, J. Phys. D: Appl. Phys. 49(7), 075111 (2016).
Z. Xie, X. Wang, J. Ye, S. Feng, W. Sun, T. Akalin, and Y. Zhang, Sci. Rep. 3, 3347 (2013).
S. Bauer, Am. J. Phys. 60(3), 257 (1992).
S. W. McKnight, K. P. Stewart, H. D. Drew, and K. Moorjani, Infrared Phys. 27(5), 327 (1987).
F. Yan, E. P. J. Parrott, X. Dong Liu, and E. Pickwell-MacPherson, Opt. Lett. 40(12), 2886 (2015).
J. A. Aguilera, J. Aguilera, P. Baumeister, A. Bloom, D. Coursen, J. A. Dobrowolski, F. T. Goldstein, D. E. Gustafson, and R. A. Kemp, Appl. Opt. 27(14), 2832 (1988).
Y. Zhou, X. Xu, F. Hu, X. Zheng, W. Li, P. Zhao, J. Bai, and Z. Ren, Appl. Phys. Lett. 104(5), 051106 (2014).

Data & Media loading...


Efficient methods to modulate terahertz (THz) light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd