Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Swiderski, “High-power mid-infrared supercontinuum sources: Current status and future perspectives,” Prog. Quantum Electron. 38, 189235 (2014).
A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6, 440449 (2012).
Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3, 10751086 (2013).
G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, and A. F. Abouraddy, “Infrared fibers,” Adv. Opt. Photonics 7, 379458 (2015).
A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear application,” Opt. Express 17, 1671616721 (2009).
R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18, 345348 (2012).
S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40, 26682671 (2015).
U. Møller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23, 32823291 (2015).
A. Al-kadry, M. E. Amraoui, Y. Messaddeq, and M. Rochette, “Two octaves mid-infrared supercontinuum generation in As2Se3 microwires,” Opt. Express 22, 3113131137 (2014).
W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, “Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system,” Opt. Lett. 39, 18491852 (2014).
T. Cheng, L. Zhang, X. Xue, A. Wang, D. Deng, T. Suzuki, and Y. Ohishi, “Broadband cascaded four-wave mixing and supercontinuum generation in a tellurite microstructured optical fiber pumped at 2 μm,” Opt. Express 23, 41254134 (2015).
M. Belal, L. Xu, P. Horak, L. Shen, X. Feng, M. Ettabib, D. J. Richardson, P. Petropoulos, and J. H. V. Price, “Mid-infrared supercontinuum generation in suspended core tellurite microstructured optical fibers,” Opt. Lett. 40, 22372240 (2015).
I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwith supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers,” Opt. Express 20, 2708327093 (2012).
J. Picot-Clemente, C. Strutynski, F. Amrani, F. Désévédavy, J.-C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374379 (2015).
P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 71617168 (2008).
R. Thapa, D. Rhonehouse, D. Nguyen, K. Wiersma, C. Smith, J. Zong, and A. Chavez-Pirson, “Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm,” Proc. SPIE 8898, 889808 (2013).
C. Wei, X. Zhu, R. A. Norwood, F. Song, and N. Peyghambarian, “Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 μm,” Opt. Express 21, 2948829504 (2013).
D. L. Rhonehouse, J. Zong, D. Nguyen, R. Thapa, K. Wiersma, C. Smith, and A. Chavez-Pirson, “Low loss, wide transparency, robust tellurite glass fibers for mid-IR (2-5 μm) applications,” Proc. SPIE 8898, 88980D (2013).
J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41, 17561759 (2016).
J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 11351184 (2006).
S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879887 (1974).
J. A. Buck, in Fundamentals of Optical Fibers (Wiley, 2004), Chap. 6.
L. G. Cohen, D. Marcuse, and W. L. Mammel, “Radiating leaky-mode losses in single-mode lightguides with depressed-index claddings,” IEEE J. Quantum Electron. 18, 14671472 (1982).
M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. 18, 535542 (1982).
A. Steinmann, B. Metzger, R. Hegenbarth, and H. Giessen, in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThAA5.
T. Steinle, F. Neubrech, A. Steinmann, X. Yin, and H. Giessen, “Mid-infrared Fourier-transform spectroscopy with a high-brilliance tunable laser source: Investigating sample areas down to 5 μm diameter,” Opt. Express 23, 1110511113 (2015).
T. Südmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304306 (2001).
F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23, 2396023967 (2015).
D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 17051708 (2003).
W. Wang, H. Yang, P. Tang, C. Zhao, and J. Gao, “Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths,” Opt. Express 21, 1121511226 (2013).
S. Zhao, H. Yang, N. Chen, X. Fu, and C. Zhao, “Soliton trapping of dispersive waves in photonic crystal fiber with three zero-dispersive wavelengths,” IEEE Photon. J. 7, 7102709 (2015).
B. Kibler, C. Finot, G. Gadret, G. Millot, J. Wojcik, M. Szpulak, and W. Urbanczyk, “Second zero dispersion wavelength measurement through soliton self-frequency shift compensation in suspended core fibre,” Electron. Lett. 44, 13701371 (2008).
X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110 (2010).
D. Hollenbeck and C. D. Cantrell, “Multiple-vibration-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 28862892 (2002).

Data & Media loading...


We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 m and 4.1 m at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 m by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 m can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd