1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Nanoscale thermal transport. II. 2003–2012
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4832615
1.
1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “ Nanoscale thermal transport,” J. Appl. Phys. 93, 793818 (2003).
http://dx.doi.org/10.1063/1.1524305
2.
2. A. Shakouri, “ Recent developments in semiconductor thermoelectric physics and materials,” Annu. Rev. Mater. Res. 41, 399431 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100445
3.
3. T. M. Tritt, “ Thermoelectric phenomena, materials, and applications,” Annu. Rev. Mater. Res. 41, 433448 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100453
4.
4. D. L. Medlin and G. J. Snyder, “ Interfaces in bulk thermoelectric materials,” Curr. Opin. Colloid Interface Sci. 14, 226235 (2009).
http://dx.doi.org/10.1016/j.cocis.2009.05.001
5.
5. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, “ Nanostructured thermoelectrics: Big efficiency gains from small features,” Adv. Mater. 22, 39703980 (2010).
http://dx.doi.org/10.1002/adma.201000839
6.
6. M. G. Kanatzidis, “ Nanostructured thermoelectrics: The new paradigm?Chem. Mater. 22, 648659 (2010).
http://dx.doi.org/10.1021/cm902195j
7.
7. E. S. Toberer, L. L. Baranowski, and C. Dames, “ Advances in thermal conductivity,” Annu. Rev. Mater. Res. 42, 179209 (2012).
http://dx.doi.org/10.1146/annurev-matsci-070511-155040
8.
8. A. A. Balandin, “ Thermal properties of graphene and nanostructured carbon materials,” Nature Mater. 10, 569581 (2011).
http://dx.doi.org/10.1038/nmat3064
9.
9. M. M. Sadeghi, M. T. Pettes, and L. Shi, “ Thermal transport in graphene,” Solid State Commun. 152, 13211330 (2012).
http://dx.doi.org/10.1016/j.ssc.2012.04.022
10.
10. A. M. Marconnet, M. A. Panzer, and K. E. Goodson, “ Thermal conduction phenomena in carbon nanotubes and related nanostructured materials,” Rev. Mod. Phys. 1, 12951326 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.1295
11.
11. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, “ Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond,” Rev. Mod. Phys. 84, 10451066 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.1045
12.
12. A. Weathers and L. Shi, “ Thermal transport measurement techniques for nanowires and nanotubes,” Annu. Rev. Heat Transfer 15, 101134 (2013).
http://dx.doi.org/10.1615/AnnualRevHeatTransfer.v16
13.
13. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005).
14.
14. Z. Zhang, Nano/Microscale Heat Transfer (McGraw–Hill Professional, 2007).
15.
15. S. Volz, R. Carminati, P. Chantrenne, S. Dilhaire, S. Gomez, N. Trannoy, and G. Tessier, Microscale and Nanoscale Heat Transfer (Springer, 2007).
16.
16. C. Sobhan and G. Peterson, Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications (CRC Press, 2008).
17.
17. I. M. Khalatnikov, “ Teploobmen Mezhdu Tverdym Telom I Geliem II,” Sov. Phys. JETP 22, 687704 (1952).
18.
18. I. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).
19.
19. D. Young and H. Maris, “ Lattice-dynamical calculation of the Kapitza resistance between fcc lattices,” Phys. Rev. B 40, 3685 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3685
20.
20. S. Pettersson and G. D. Mahan, “ Theory of the thermal boundary resistance between dissimilar lattices,” Phys. Rev. B 42, 73867390 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.7386
21.
21. B. N. Persson and H. Ueba, “ Heat transfer between graphene and amorphous Si O2,” J. Phys. Condens. Matter 22, 462201 (2010).
http://dx.doi.org/10.1088/0953-8984/22/46/462201
22.
22. P. Hyldgaard and G. D. Mahan, “ Phonon superlattice transport,” Phys. Rev. B 56, 10754 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.10754
23.
23. M. V. Simkin and G. D. Mahan, “ Minimum thermal conductivity of superlattices,” Phys. Rev. Lett. 84, 927 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.927
24.
24. S. M. Lee, D. G. Cahill, and R. Venkatasubramanian, “ Thermal conductivity of Si-Ge superlattices,” Appl. Phys. Lett. 70, 2957 (1997).
http://dx.doi.org/10.1063/1.118755
25.
25. S. T. Huxtable, A. R. Abramson, C. L. Tien, A. Majumdar, C. LaBounty, X. F. Fan, G. Zeng, J. E. Bowers, A. Shakouri, and E. T. Croke, “ Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Appl. Phys. Lett. 80, 1737 (2002).
http://dx.doi.org/10.1063/1.1455693
26.
26. M. L. Lee and R. Venkatasubramanian, “ Effect of nanodot areal density and period on thermal conductivity in SiGe/Si nanodot superlattice,” Appl. Phys. Lett. 92, 053112 (2008).
http://dx.doi.org/10.1063/1.2842388
27.
27. V. Rawat, Y. K. Koh, D. G. Cahill, and T. D. Sands, “ Thermal conductivity of (Zr,W)N/ScN metal/semiconductor multilayers and superlattices,” J. Appl. Phys. 105, 024909 (2009).
http://dx.doi.org/10.1063/1.3065092
28.
28. Y. K. Koh, Y. Cao, D. G. Cahill, and D. Jena, “ Heat-transport mechanisms in superlattices,” Adv. Funct. Mater. 19, 610615 (2009).
http://dx.doi.org/10.1002/adfm.200800984
29.
29. B. C. Gundrum, D. G. Cahill, and R. S. Averback, “ Thermal conductance of metal-metal interfaces,” Phys. Rev. B 72, 245426 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.245426
30.
30. R. B. Wilson and D. G. Cahill, “ Experimental validation of the interfacial form of the Wiedemann-Franz law,” Phys. Rev. Lett. 108, 255901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.255901
31.
31. G. D. Mahan, “ Thermal transport in AB superlattices,” Phys. Rev. B 83, 125313 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125313
32.
32. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science Publications, 1986).
33.
33. A. J. C. Ladd, B. Moran, and W. G. Hoover, “ Lattice thermal conductivity: A comparison of molecular dynamics and anharmonic lattice dynamics,” Phys. Rev. B 34, 5058 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.5058
34.
34. P. K. Schelling, S. R. Phillpot, and P. Keblinski, “ Comparison of atomic-level simulation methods for computing thermal conductivity,” Phys. Rev. B 65, 144306 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144306
35.
35. J.-L. Barrat and F. Chiaruttini, “ Kapitza resistance at the liquid-solid interface,” Mol. Phys. 101, 16051610 (2003).
http://dx.doi.org/10.1080/0026897031000068578
36.
36. S. Shenogin, P. Keblinski, D. Bedrov, and G. Smith, “ Thermal relaxation mechanism and role of chemical functionalization in fullerene solutions,” J. Chem. Phys. 124, 014702 (2006).
http://dx.doi.org/10.1063/1.2140707
37.
37. P. Schelling, S. Phillpot, and P. Keblinski, “ Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation,” Appl. Phys. Lett. 80, 2484 (2002).
http://dx.doi.org/10.1063/1.1465106
38.
38. P. K. Schelling, S. R. Phillpot, and P. Keblinski, “ Kapitza conductance and phonon scattering at grain boundaries by simulation,” J. Appl. Phys. 95, 6082 (2004).
http://dx.doi.org/10.1063/1.1702100
39.
39. W. Zhang, T. Fisher, and N. Mingo, “ The atomistic Green's function method: An efficient simulation approach for nanoscale phonon transport,” Numer. Heat Transfer, Part B 51, 333349 (2007).
http://dx.doi.org/10.1080/10407790601144755
40.
40. P. Hopkins, P. Norris, M. Tsegaye, and A. Ghosh, “ Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green's function approach compared to semiclassical methods,” J. Appl. Phys. 106, 063503 (2009).
http://dx.doi.org/10.1063/1.3212974
41.
41. N. Mingo and L. Yang, “ Phonon transport in nanowires coated with an amorphous material: An atomistic Green's function approach,” Phys. Rev. B 68, 245406 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.245406
42.
42. M. Hu, P. Keblinski, and P. Schelling, “ Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations,” Phys. Rev. B 79, 104305 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104305
43.
43. E. Swartz and R. Pohl, “ Thermal boundary resistance,” Rev. Mod. Phys. 61, 605 (1989).
http://dx.doi.org/10.1103/RevModPhys.61.605
44.
44. N. Shenogina, R. Godawat, P. Keblinski, and S. Garde, “ How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces,” Phys. Rev. Lett. 102, 156101 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.156101
45.
45. Z. B. Ge, D. G. Cahill, and P. V. Braun, “ Thermal conductance of hydrophilic and hydrophobic interfaces,” Phys. Rev. Lett. 96, 186101 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.186101
46.
46. M. Shen, W. Evans, D. Cahill, and P. Keblinski, “ Bonding and pressure-tunable interfacial thermal conductance,” Phys. Rev. B 84, 195432 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.195432
47.
47. T. Luo and J. Lloyd, “ Non-equilibrium molecular dynamics study of thermal energy transport in Au–SAM–Au junctions,” Int. J. Heat Mass Transfer 53, 111 (2010).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.10.033
48.
48. L. Hu, L. Zhang, M. Hu, J.-S. Wang, B. Li, and P. Keblinski, “ Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations,” Phys. Rev. B 81, 235427 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.235427
49.
49. Z. Ong and E. Pop, “ Frequency and polarization dependence of thermal coupling between carbon nanotubes and SiO2,” J. Appl. Phys. 108, 103502 (2010).
http://dx.doi.org/10.1063/1.3484494
50.
50. G. S. Hwang and M. Kaviany, “ Molecular dynamics simulation of effective thermal conductivity of vapor-filled nanogap and nanocavity,” J. Appl. Phys. 106, 024317 (2009).
http://dx.doi.org/10.1063/1.3186043
51.
51. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, “ Direct calculation of the tunneling current,” J. Phys. C 4, 916 (1971).
http://dx.doi.org/10.1088/0022-3719/4/8/018
52.
52. R. Prasher, “ Acoustic mismatch model for thermal contact resistance of van der Waals contacts,” Appl. Phys. Lett. 94, 041905 (2009).
http://dx.doi.org/10.1063/1.3075065
53.
53. T. English, J. Duda, J. Smoyer, D. Jordan, P. Norris, and L. Zhigilei, “ Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces,” Phys. Rev. B 85, 035438 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.035438
54.
54. R. Stevens, L. Zhigilei, and P. Norris, “ Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations,” Int. J. Heat Mass Transfer 50, 39773989 (2007).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.01.040
55.
55. M. Hu, J. Goicochea, B. Michel, and D. Poulikakos, “ Water nanoconfinement induced thermal enhancement at hydrophilic quartz interfaces,” Nano Lett. 10, 279285 (2010).
http://dx.doi.org/10.1021/nl9034658
56.
56. M. Hu, X. Zhang, D. Poulikakos, and C. Grigoropoulos, “ Large near junction thermal resistance reduction in electronics by interface nanoengineering,” Int. J. Heat Mass Transfer 54, 51835191 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.08.027
57.
57. K. Termentzidis, P. Chantrenne, and P. Keblinski, “ Nonequilibrium molecular dynamics simulation of the in-plane thermal conductivity of superlattices with rough interfaces,” Phys. Rev. B 79, 214307 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.214307
58.
58. P. Kim, L. Shi, A. Majumdar, and P. McEuen, “ Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett. 87, 215502 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.215502
59.
59. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “ Superior thermal conductivity of single–layer graphene,” Nano Lett. 8, 902907 (2008).
http://dx.doi.org/10.1021/nl0731872
60.
60. S. Huxtable, D. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M. Strano, G. Siddons, M. Shim et al., “ Interfacial heat flow in carbon nanotube suspensions,” Nature Mater. 2, 731734 (2003).
http://dx.doi.org/10.1038/nmat996
61.
61. S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D. G. Cahill, “ Role of thermal boundary resistance on the heat flow in carbon-nanotube composites,” J. Appl. Phys. 95, 8136 (2004).
http://dx.doi.org/10.1063/1.1736328
62.
62. T. G. D. L. Hu and P. Keblinski, “ Thermal transport in graphene-based nanocomposite,” Phys. Rev. B 83, 195423 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195423
63.
63. L. Hu, T. Desai, and P. Keblinski, “ Thermal transport in graphene-based nanocomposite,” J. Appl. Phys. 110, 033517 (2011).
http://dx.doi.org/10.1063/1.3610386
64.
64. P. Keblinski, S. Phillpot, S. Choi, and J. Eastman, “ Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” Int. J. Heat Mass Transfer 45, 855863 (2002).
http://dx.doi.org/10.1016/S0017-9310(01)00175-2
65.
65. L. Xue, P. Keblinski, S. Phillpot, S.-S. Choi, and J. Eastman, “ Effect of liquid layering at the liquidsolid interface on thermal transport,” Int. J. Heat Mass Transfer 47, 42774284 (2004).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.05.016
66.
66. J. Eapen, J. Li, and S. Yip, “ Mechanism of thermal transport in dilute nanocolloids,” Phys. Rev. Lett. 98, 28302 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.028302
67.
67. O. M. Wilson, X. Y. Hu, D. G. Cahill, and P. V. Braun, “ Colloidal metal particles as probes of nanoscale thermal transport in fluids,” Phys. Rev. B 66, 224301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.224301
68.
68. S. Merabia, P. Keblinski, L. Joly, L. Lewis, and J. Barrat, “ Critical heat flux around strongly heated nanoparticles,” Phys. Rev. E 79, 021404 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.021404
69.
69. M. Hu, H. Petrova, and G. Hartland, “ Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures,” Chem. Phys. Lett. 391, 220225 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.05.016
70.
70. A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, and G. Von Plessen, “ Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering,” Phys. Rev. B 70, 195423 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195423
71.
71. R. Costescu, M. Wall, and D. Cahill, “ Thermal conductance of epitaxial interfaces,” Phys. Rev. B 67, 054302 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.054302
72.
72. A. Hanisch, B. Krenzer, T. Pelka, S. Mollenbeck, and M. Horn-von Hoegen, “ Thermal response of epitaxial thin Bi films on Si (001) upon femtosecond laser excitation studied by ultrafast electron diffraction,” Phys. Rev. B 77, 125410 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125410
73.
73. B. Krenzer, A. Hanisch-Blicharski, P. Schneider, T. Payer, S. Mollenbeck, O. Osmani, M. Kammler, R. Meyer, and M. Horn-von Hoegen, “ Phonon confinement effects in ultrathin epitaxial bismuth films on silicon studied by time-resolved electron diffraction,” Phys. Rev. B 80, 024307 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.024307
74.
74. H. K. Lyeo and D. G. Cahill, “ Thermal conductance of interfaces between highly dissimilar materials,” Phys. Rev. B 73, 144301 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.144301
75.
75. T. Frigge, A. Kalus, F. Klasing, M. Kammler, A. Hanisch-Blicharski, and M. H. von Hoegen, “ Nanoscale Heat Transport in Self-Organized Ge Clusters on Si(001),” in Nanoscale Thermoelectrics 2012-Materials and Transport Phenomena (Mater. Res. Soc. Symp. Proc., 2013), Vol. 1456, pp. mrss121456jj0508.
76.
76. R. M. Costescu, D. G. Cahill, F. H. Fabreguette, Z. A. Sechrist, and S. M. George, “ Ultra-low thermal conductivity in W/Al2O3 nanolaminates,” Science 303, 989990 (2004).
http://dx.doi.org/10.1126/science.1093711
77.
77. Y. S. Ju, M.-T. Hung, and T. Usui, “ Nanoscale heat conduction across metal-dielectric interfaces,” J. Heat Transfer 128, 919925 (2006).
http://dx.doi.org/10.1115/1.2241839
78.
78. Z. J. Li, S. Tan, E. Bozorg-Grayeli, T. Kodama, M. Asheghi, G. Delgado, M. Panzer, A. Pokrovsky, D. Wack, and K. E. Goodson, “ Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm,” Nano Lett. 12, 31213126 (2012).
http://dx.doi.org/10.1021/nl300996r
79.
79. Y. Jin, A. Yadav, K. Sun, H. Sun, K. P. Pipe, and M. Shtein, “ Thermal boundary resistance of copper phthalocyanine-metal interface,” Appl. Phys. Lett. 98, 093305 (2011).
http://dx.doi.org/10.1063/1.3555449
80.
80. Y. Jin, C. Shao, J. Kieffer, K. P. Pipe, and M. Shtein, “ Origins of thermal boundary conductance of interfaces involving organic semiconductors,” J. Appl. Phys. 112, 093503 (2012).
http://dx.doi.org/10.1063/1.4759286
81.
81. A. Majumdar and P. Reddy, “ Role of electronphonon coupling in thermal conductance of metalnonmetal interfaces,” Appl. Phys. Lett. 84, 4768 (2004).
http://dx.doi.org/10.1063/1.1758301
82.
82. J. Ordonez-Miranda, J. J. Alvarado-Gil, and R. Yang, “ The effect of the electron-phonon coupling on the effective thermal conductivity of metal-nonmetal multilayers,” J. Appl. Phys. 109, 094310 (2011).
http://dx.doi.org/10.1063/1.3585824
83.
83. W. Wang and D. G. Cahill, “ Limits to thermal transport in nanoscale metal bilayers due to weak electron-phonon coupling in Au and Cu,” Phys. Rev. Lett. 109, 175503 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.175503
84.
84. A. Birch, W. R. G. Kemp, P. G. Klemens, and R. J. Tainsh, “ The lattice thermal conductivity of some gold alloys,” Aust. J. Phys. 12, 455 (1959).
http://dx.doi.org/10.1071/PH590455
85.
85. C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack, “ Ultralow thermal conductivity in disordered, layered WSe2 crystals,” Science 315, 351353 (2007).
http://dx.doi.org/10.1126/science.1136494
86.
86. D. G. Cahill, S. K. Watson, and R. O. Pohl, “ Lower limit to the thermal conductivity of disordered crystals,” Phys. Rev. B 46, 61316140 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.6131
87.
87. Z. Wei, Y. Chen, and C. Dames, “ Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material,” Appl. Phys. Lett. 102, 011901 (2013).
http://dx.doi.org/10.1063/1.4773372
88.
88. Z. Chen, Z. Wei, Y. Chen, and C. Dames, “ Anisotropic Debye model for the thermal boundary conductance,” Phys. Rev. B 87, 125426 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.125426
89.
89. P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “ Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 15781586 (2008).
http://dx.doi.org/10.1021/ar7002804
90.
90. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “ Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100, 054305 (2006).
http://dx.doi.org/10.1063/1.2335783
91.
91. C. T. Avedisian, R. E. Cavicchi, P. L. McEuen, and X. Zhou, “ Nanoparticles for cancer treatment: Role of heat transfer,” Ann. N.Y. Acad. Sci. 1161, 6273 (2009).
http://dx.doi.org/10.1111/j.1749-6632.2009.04090.x
92.
92. Z. B. Ge, D. G. Cahill, and P. V. Braun, “ AuPd metal nanoparticles as probes of nanoscale thermal transport in aqueous solution,” J. Phys. Chem. B 108, 1887018875 (2004).
http://dx.doi.org/10.1021/jp048375k
93.
93. G. V. Hartland, “ Optical studies of dynamics in noble metal nanostructures,” Chem. Rev. 111, 38583887 (2011).
http://dx.doi.org/10.1021/cr1002547
94.
94. R. Y. Wang, R. A. Segalman, and A. Majumdar, “ Room temperature thermal conductance of alkanedithiol self-assembled monolayers,” Appl. Phys. Lett. 89, 173113 (2006).
http://dx.doi.org/10.1063/1.2358856
95.
95. M. D. Losego, M. E. Grady, N. R. Sottos, D. G. Cahill, and P. V. Braun, “ Effects of chemical bonding on heat transport across interfaces,” Nature Mater. 11, 502506 (2012).
http://dx.doi.org/10.1038/nmat3303
96.
96. C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, “ Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold,” J. Am. Chem. Soc. 111, 321335 (1989).
http://dx.doi.org/10.1021/ja00183a049
97.
97. Y. Yourdshahyan and A. M. Rappe, “ Structure and energetics of alkanethiol adsorption on the Au(111) surface,” J. Chem. Phys. 117, 825833 (2002).
http://dx.doi.org/10.1063/1.1483072
98.
98. W.-P. Hsieh, A. S. Lyons, E. Pop, P. Keblinski, and D. G. Cahill, “ Pressure tuning of the thermal conductance of weak interfaces,” Phys. Rev. B 84, 184107 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.184107
99.
99. J. K. Yang, Y. Yang, S. W. Waltermire, X. X. Wu, H. T. Zhang, T. Gutu, Y. F. Jiang, Y. F. Chen, A. A. Zinn, R. Prasher, T. T. Xu, and D. Y. Li, “ Enhanced and switchable nanoscale thermal conduction due to van der Waals interfaces,” Nat. Nanotechnol. 7, 9195 (2012).
http://dx.doi.org/10.1038/nnano.2011.216
100.
100. C. M. Hargreaves, “ Anomalous radiative transfer between closely-spaced bodies,” Phys. Lett. A 30, 491492 (1969).
http://dx.doi.org/10.1016/0375-9601(69)90264-3
101.
101. D. Polder and M. Van Hove, “ Theory of radiative heat transfer between closely spaced bodies,” Phys. Rev. B 4, 33033314 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.3303
102.
102. J. J. Loomis and H. J. Maris, “ Theory of heat transfer by evanescent electromagnetic waves,” Phys. Rev. B 50, 1851718524 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.18517
103.
103. A. I. Volokitin and B. N. J. Persson, “ Radiative heat transfer between nanostructures,” Phys. Rev. B 63, 205404 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205404
104.
104. A. I. Volokitin and B. N. Persson, “ Resonant photon tunneling enhancement of the radiative heat transfer,” Phys. Rev. B 69, 045417 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045417
105.
105. A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig, and M. Holthaus, “ Near-field heat transfer in a scanning thermal microscope,” Phys. Rev. Lett. 95, 224301 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.224301
106.
106. K. Zhang, “ Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling,” Nanotechnology 19, 215706 (2008).
http://dx.doi.org/10.1088/0957-4484/19/21/215706
107.
107. G. D. Mahan, “ Kapitza resistance between a metal and a nonmetal,” Phys. Rev. B 79, 075408 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075408
108.
108. P. Ben-Abdallah and K. Joulain, “ Noncontact heat transfer between two metamaterials,” Phys. Rev. B 82, 121419 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.121419
109.
109. S. A. Biehs, E. Rousseau, and J. J. Greffet, “ A mesoscopic description of radiative heat transfer at the nanoscale,” Phys. Rev. Lett. 105, 234301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.234301
110.
110. C. R. Otey, W. T. Lau, and S. H. Fan, “ Thermal rectification through vacuum,” Phys. Rev. Lett. 104, 154301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.154301
111.
111. G. D. Mahan, “ The tunneling of heat,” Appl. Phys. Lett. 98, 132106 (2011).
http://dx.doi.org/10.1063/1.3573800
112.
112. A. I. Volokitin and B. N. Persson, “ Near-field radiative heat transfer between closely spaced graphene and amorphous SiO2,” Phys. Rev. B 83, 241407 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241407
113.
113. B. N. Persson, A. I. Volokitin, and H. Ueba, “ Phononic heat transfer across an interface: Thermal boundary resistance,” J. Phys. Condens. Matter 23, 045009 (2011).
http://dx.doi.org/10.1088/0953-8984/23/4/045009
114.
114. R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock, G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, “ Near-field radiative heat transfer between macroscopic planar surfaces,” Phys. Rev. Lett. 107, 014301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.014301
115.
115. C. Otey and S. Fan, “ Numerically exact calculation of electromagnetic heat transfer between a dielectric sphere and plate,” Phys. Rev. B 84, 245431 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.245431
116.
116. P. M. Norris, J. L. Smoyer, J. C. Duda, and P. E. Hopkins, “ Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials,” J. Heat Transfer 134, 020910 (2012).
http://dx.doi.org/10.1115/1.4004932
117.
117. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “ Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep. 57, 59112 (2005).
http://dx.doi.org/10.1016/j.surfrep.2004.12.002
118.
118. G. C. Arvind Narayanaswamy, “ Direct computation of thermal emission from nanostructures,” Annu. Rev. Heat Transfer 14, 169195 (2005).
http://dx.doi.org/10.1615/AnnualRevHeatTransfer.v14.130
119.
119. E. G. Cravalho, G. A. Domoto, and C. L. Tien, Progress in Astronautics and Aeronautics Measurement of Thermal Radiation of Solids at Liquid Helium Temperatures (Academic Press, New York, 1969), Vol. 21.
120.
120. G. A. Domoto, R. F. Boehm, and C. L. Tien, “ Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures,” J. Heat Transfer 92, 412417 (1970).
http://dx.doi.org/10.1115/1.3449677
121.
121. C. Hargreaves, “ Radiative transfer between closely spaced bodies,” Philips Res. Rep. Suppl. 5, 180 (1973).
122.
122. T. Kralik, P. Hanzelka, V. Musilova, A. Srnka, and M. Zobac, “ Cryogenic apparatus for study of near-field heat transfer,” Rev. Sci. Instrum. 82, 055106 (2011).
http://dx.doi.org/10.1063/1.3585985
123.
123. J. Xu, K. Lauger, R. Moller, K. Dransfeld, and I. H. Wilson, “ Heat transfer between two metallic surfaces at small distances,” J. Appl. Phys. 76, 72097216 (1994).
http://dx.doi.org/10.1063/1.358001
124.
124. L. Hu, A. Narayanaswamy, X. Chen, and G. Chen, “ Near-field thermal radiation between two closely spaced glass plates exceeding Planck's blackbody radiation law,” Appl. Phys. Lett. 92, 133106 (2008).
http://dx.doi.org/10.1063/1.2905286
125.
125. A. Narayanaswamy, S. Shen, and G. Chen, “ Near-field radiative heat transfer between a sphere and a substrate,” Phys. Rev. B 78, 115303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115303
126.
126. S. Shen, A. Narayanaswamy, and G. Chen, “ Surface phonon polaritons mediated energy transfer between nanoscale gaps,” Nano Lett. 9, 29092913 (2009).
http://dx.doi.org/10.1021/nl901208v
127.
127. J. R. Barnes, R. J. Stephenson, M. E. Welland, C. H. Gerber, and J. K. Gimzewski, “ Photothermal spectroscopy with femotjoule sensitivity using a micromechanical device,” Nature 372, 7981 (1994).
http://dx.doi.org/10.1038/372079a0
128.
128. J. Varesi, J. Lai, T. Perazzo, Z. Shi, and A. Majumdar, “ Photothermal measurements at picowatt resolution using uncooled micro-optomechanical sensors,” Appl. Phys. Lett. 71, 306308 (1997).
http://dx.doi.org/10.1063/1.120440
129.
129. S. Shen, A. Narayanaswamy, S. Goh, and G. Chen, “ Thermal conductance of bimaterial microcantilevers,” Appl. Phys. Lett. 92, 063509 (2008).
http://dx.doi.org/10.1063/1.2829999
130.
130. N. Gu, K. Sasihithlu, and A. Narayanaswamy, “ Near field radiative heat transfer measurement,” in Renewable Energy and the Environment (Optical Society of America, 2011), p. JWE13.
131.
131. P. S. S. Shen, A. Mavrokefalos and G. Chen, “ Nanoscale thermal radiation between two gold surfaces,” Appl. Phys. Lett. 100, 233114 (2012).
http://dx.doi.org/10.1063/1.4723713
132.
132. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, and J.-J. Greffet, “ Radiative heat transfer at the nanoscale,” Nature Photon. 3, 514517 (2009).
http://dx.doi.org/10.1038/nphoton.2009.144
133.
133. K. Sasihithlu and A. Narayanaswamy, “ Proximity effects in radiative heat transfer,” Phys. Rev. B 83, 161406 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.161406
134.
134. I. Dorofeyev, “ Rate of heat transfer between a probing body and a sample due to electromagnetic fluctuations,” Phys. Lett. A 372, 13411347 (2008).
http://dx.doi.org/10.1016/j.physleta.2007.09.050
135.
135. C. Henkel and K. Joulain, “ Electromagnetic field correlations near a surface with a nonlocal optical response,” Appl. Phys. B: Lasers Opt. 84, 6168 (2006).
http://dx.doi.org/10.1007/s00340-006-2219-9
136.
136. H. B. G. Casimir, “ On the attraction between two perfectly conducting plates,” Proc. K. Ned. Akad. Wet. B 51, 793 (1948).
137.
137. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, “ General theory Of Van Der Waals' forces,” Sov. Phys. Usp. 4, 153 (1961).
http://dx.doi.org/10.1070/PU1961v004n02ABEH003330
138.
138. S. Rytov, Theory of Electric Fluctuations and Thermal Radiation (AFCRC-TR-59162, Electronics Research Directorate, Air Force Cambridge Research Center, Air Research and Development Command, U.S. Air Force, Bedford, MA, 1959).
139.
139. U. Mohideen and A. Roy, “ Precision measurement of the Casimir force from 0.1 to 0.9 μm,” Phys. Rev. Lett. 81, 45494552 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4549
140.
140. K. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, Singapore, 2001).
141.
141. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics (Springer–Verlag, Berlin, 1989).
142.
142. P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet, “ Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces,” Phys. Rev. B 77, 035431 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.035431
143.
143. J. B. Pendry, “ Radiative exchange of heat between nanostructures,” J. Phys.: Condens. Matter 11, 66216633 (1999).
http://dx.doi.org/10.1088/0953-8984/11/35/301
144.
144. J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, “ Nanoscale radiative heat transfer between a small particle and a plane surface,” Appl. Phys. Lett. 78, 29312933 (2001).
http://dx.doi.org/10.1063/1.1370118
145.
145. A. Narayanaswamy and G. Chen, “ Thermal near-field radiative transfer between two spheres,” Phys. Rev. B 77, 075125 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.075125
146.
146. M. Kruger, T. Emig, and M. Kardar, “ Nonequilibrium electromagnetic fluctuations: Heat transfer and interactions,” Phys. Rev. Lett. 106, 210404 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.210404
147.
147. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “ Frequency-selective near-field radiative heat transfer between photonic crystal slabs: A computational approach for arbitrary geometries and materials,” Phys. Rev. Lett. 107, 114302 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.114302
148.
148. A. P. McCauley, M. T. H. Reid, M. Krüger, and S. G. Johnson, “ Modeling near-field radiative heat transfer from sharp objects using a general 3d numerical scattering technique,” Phys. Rev. B 85, 165104 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.165104
149.
149. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “ Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 15481551 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1548
150.
150. S. Basu and M. Francoeur, “ Near-field radiative transfer based thermal rectification using doped silicon,” Appl. Phys. Lett. 98, 113106 (2011).
http://dx.doi.org/10.1063/1.3567026
151.
151. L. Zhu, C. R. Otey, and S. Fan, “ Negative differential thermal conductance through vacuum,” Appl. Phys. Lett. 100, 044104 (2012).
http://dx.doi.org/10.1063/1.3679694
152.
152. S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “ Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett. 98, 243102 (2011).
http://dx.doi.org/10.1063/1.3596707
153.
153. P. J. van Zwol, K. Joulain, P. Ben Abdallah, J. J. Greffet, and J. Chevrier, “ Fast nanoscale heat-flux modulation with phase-change materials,” Phys. Rev. B 83, 201404 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.201404
154.
154. A. K. Hafeli, E. Rephaeli, S. Fan, D. G. Cahill, and T. E. Tiwald, “ Temperature dependence of surface phonon polaritons from a quartz grating,” J. Appl. Phys. 110, 043517 (2011).
http://dx.doi.org/10.1063/1.3624603
155.
155. R. J. Stoner and H. J. Maris, “ Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K,” Phys. Rev. B 48, 16373 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.16373
156.
156. E. S. Landry and A. J. H. McGaughey, “ Thermal boundary resistance predictions from molecular dynamics simulations and theoretical calculations,” Phys. Rev. B 80, 165304 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165304
157.
157. J. E. Turney, A. J. H. McGaughey, and C. H. Amon, “ Assessing the applicability of quantum corrections to classical thermal conductivity predictions,” Phys. Rev. B 79, 224305 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224305
158.
158. B. Daly, H. Maris, S. Tamura, and K. Imamura, “ Molecular dynamics calculation of the thermal conductivity of superlattices,” Phys. Rev. B 66, 024301 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.024301
159.
159. B. Daly, H. Maris, Y. Tanaka, and S. Tamura, “ Molecular dynamics calculation of the in-plane thermal conductivity of superlattices,” Phys. Rev. B 67, 033308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.033308
160.
160. Y. Chen, D. Li, J. Lukes, Z. Ni, and M. Chen, “ Minimum superlattice thermal conductivity from molecular dynamics,” Phys. Rev. B 72, 174302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.174302
161.
161. T. Kawamura, Y. Kangawa, and K. Kaimoto, “ An investigation of thermal conductivity of nitride-semiconductor nanostructures by molecular dynamics simulation,” J. Cryst. Growth 298, 251253 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.025
162.
162. S.-F. Ren, W. Cheng, and G. Chen, “ Lattice dynamics investigations of phonon thermal conductivity of Si/Ge superlattices with rough interfaces,” J. Appl. Phys. 100, 103505 (2006).
http://dx.doi.org/10.1063/1.2384810
163.
163. K. Termentzidis, P. Chantrenne, J.-Y. Duquesne, and A. Saci, “ Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces,” J. Phys. Condens. Matter 22, 475001 (2010).
http://dx.doi.org/10.1088/0953-8984/22/47/475001
164.
164. K. Termentzidis, S. Merabia, P. Chantrenne, and P. Keblinski, “ Cross-plane thermal conductivity of superlattices with rough interfaces using equilibrium and non-equilibrium molecular dynamics,” International J. Heat and Mass Transfer 54, 20142020 (2011).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.01.001
165.
165. E. S. Landry and A. J. McGaughey, “ Effect of interfacial species mixing on phonon transport in semiconductor superlattices,” Phys. Rev. B 79, 075316 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075316
166.
166. J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, “ Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations,” Phys. Rev. B 79, 064301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.064301
167.
167. M. Mohr, J. Maultzsch, E. Dobardzic, S. Reich, I. Milosevic, M. Damnjanovic, A. Bosak, M. Krisch, and C. Thomsen, “ The phonon dispersion of graphite by inelastic X-ray scattering,” Phys. Rev. B 76, 035439 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.035439
168.
168. B. Taylor, H. J. Maris, and C. Elbaum, “ Focusing of phonons in crystalline solids due to elastic anisotropy,” Phys. Rev. B 3, 14621472 (1971).
http://dx.doi.org/10.1103/PhysRevB.3.1462
169.
169. H. J. Maris, “ Enhancement of heat pulses in crystals due to elastic anisotropy,” J. Acoust. Soc. Am. 50, 812818 (1971).
http://dx.doi.org/10.1121/1.1912705
170.
170. P. Wolfe, Imaging Phonons (Cambridge University Press, Cambridge, 1998).
171.
171. G. Leibfried, Encyclopaedia of Physics, edited by S. Flugge (Springer-Verlag, Berlin, 1955), Vol. 7, p. 309.
172.
172. G. Deinzer, G. Birner, and D. Strauch, “ Ab initio calculation of the linewidth of various phonon modes in germanium and silicon,” Phys. Rev. B 67, 144304 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144304
173.
173. B. A. Weinstein and G. J. Piermarini, “ Raman scattering and phonon dispersion in Si and GaP at very high pressure,” Phys. Rev. B 12, 11721186 (1975).
http://dx.doi.org/10.1103/PhysRevB.12.1172
174.
174. M. Omini and A. Sparavigna, “ Beyond the isotropic-model approximation in the theory of thermal conductivity,” Phys. Rev. B 53, 9064 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.9064
175.
175. A. Sparavigna, “ Role of nonpairwise interactions on phonon thermal transport,” Phys. Rev. B 67, 144305 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.144305
176.
176. D. A. Broido, A. Ward, and N. Mingo, “ Lattice thermal conductivity of silicon from empirical interatomic potentials,” Phys. Rev. B 72, 014308 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.014308
177.
177. A. A. Maradudin and A. E. Fein, “ Scattering of neutrons by an anharmonic crystal,” Phys. Rev. 128, 2589 (1962).
http://dx.doi.org/10.1103/PhysRev.128.2589
178.
178. P. Klemens, Solid State Physics (Academic, New York, 1958), Vol. 7.
179.
179. P. Carruthers, “ Theory of thermal conductivity of solids at low temperatures,” Rev. Mod. Phys. 33, 92138 (1961).
http://dx.doi.org/10.1103/RevModPhys.33.92
180.
180. J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon Press, 1960).
181.
181. P. G. Klemens, “ Decay of high-frequency longitudinal phonons,” J. Appl. Phys. 38, 4573 (1967).
http://dx.doi.org/10.1063/1.1709187
182.
182. H. J. Maris and S. Tamura, “ Anharmonic decay and the propagation of phonons in an isotopically pure crystal at low temperatures: Application to dark-matter detection.” Phys. Rev. B 47, 727739 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.727
183.
183. S. Tamura, “ Spontaneous decay rates of LA phonons in quasi-isotropic solids,” Phys. Rev. B 31, 2574 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.2574
184.
184. A. Berke, A. Mayer, and R. Wehner, “ Spontaneous decay of acoustic phonons in calcium fluoride and silicon,” Solid State Commun. 54, 395397 (1985).
http://dx.doi.org/10.1016/0038-1098(85)90933-0
185.
185. R. Orbach and L. A. Vredevoe, “ The Attenuation of high frequency phonons at low temperatures,” Phys. 1, 91 (1964).
186.
186. H. J. Maris, “ In Elastic Scattering Of Neutrons By An Anharmonic Crystal At Low Temperatures,” Phys. Lett. 17, 228230 (1964).
http://dx.doi.org/10.1016/0375-9601(72)90589-0
187.
187. M. Lax, P. Hu, and V. Narayanamurti, “ Spontaneous phonon decay selection rule: N and U processes,” Phys. Rev. B 23, 30953097 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.3095
188.
188. A. Berke, A. P. Mayer, and R. K. Wehner, “ Spontaneous decay of long-wavelength acoustic phonons,” J. Phys. C 21, 2305 (1988).
http://dx.doi.org/10.1088/0022-3719/21/12/014
189.
189. P. G. Klemens, “ Anharmonic decay of optical phonons,” Phys. Rev. 148, 845848 (1966).
http://dx.doi.org/10.1103/PhysRev.148.845
190.
190. C. Herring, “ Role of low-energy phonons in thermal conduction,” Phys. Rev. 95, 954 (1954).
http://dx.doi.org/10.1103/PhysRev.95.954
191.
191. S. Simons, “ The absorption of very high frequency sound in dielectric solids,” Proc. Cambridge Philos. Soc. 53, 702 (1957).
http://dx.doi.org/10.1017/S0305004100032771
192.
192. A. A. Maradudin, A. E. Fein, and G. H. Vineyard, “ Thermal expansion and phonon frequency shifts,” Phys. Status Solidi 2, 1493 (1962).
http://dx.doi.org/10.1002/pssb.19620021107
193.
193. S. Tamura and H. J. Maris, “ Temperature dependence of phonon lifetime in dielectric crystals,” Phys. Rev. B 51, 28572863 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.2857
194.
194. S. Tamura, “ Isotope scattering of dispersive phonons in Ge,” Phys. Rev. B 27, 858 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.858
195.
195. A. Akhiezer, “ On the absorption of sound in solids,” J. Phys. (USSR) 1, 277 (1939).
196.
196. H. J. Maris, “ Phonon viscosity,” Phys. Rev. 188, 13031307 (1969).
http://dx.doi.org/10.1103/PhysRev.188.1303
197.
197. H. J. Maris, Physical Acoustics (Academic, New York, 1971), Vol. 8, p. 279.
198.
198. T. O. Woodruff and H. Ehrenreich, “ Absorption of sound in insulators,” Phys. Rev. 123, 15531559 (1961).
http://dx.doi.org/10.1103/PhysRev.123.1553
199.
199. D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A. Stewart, “ Intrinsic lattice thermal conductivity of semiconductors from first principles,” Appl. Phys. Lett. 91, 231922 (2007).
http://dx.doi.org/10.1063/1.2822891
200.
200. A. Ward, D. S. Broido, D. A. Stewart, and G. Deinzer, “ Ab-initio theory of the lattice thermal conductivity of diamond,” Phys. Rev. B 80, 125203 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125203
201.
201. A. Ward and D. A. Broido, “ Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge,” Phys. Rev. B 81, 085205 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085205
202.
202. L. Lindsay and D. A. Broido, “ Three-phonon phase space and lattice thermal conductivity in semiconductors,” J. Phys. Condens. Matter 20, 165209 (2008).
http://dx.doi.org/10.1088/0953-8984/20/16/165209
203.
203. W. Li, N. Mingo, L. Linday, D. A. Broido, D. A. Stewart, and N. A. Katcho, “ Thermal conductivity of diamond nanowires from first principles,” Phys. Rev. B 85, 195436 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.195436
204.
204. L. Lindsay, D. A. Broido, and N. Mingo, “ Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules,” Phys. Rev. B 80, 125407 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.125407
205.
205. L. Lindsay, D. A. Broido, and N. Mingo, “ Flexural phonons and thermal transport in graphene,” Phys. Rev. B 82, 115427 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115427
206.
206. H. J. Maris and S. Tamura, “ Heat flow in nanostructures in the Casimir regime,” Phys. Rev. B 85, 054304 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054304
207.
207. A. K. McCurdy, H. J. Maris, and C. Elbaum, “ Anisotropic heat conduction in cubic crystals in the boundary scattering regime,” Phys. Rev. B 2, 40774083 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.4077
208.
208. H. B. G. Casimir, “ Note on the conduction of heat in crystals,” Physica 5, 495500 (1938).
http://dx.doi.org/10.1016/S0031-8914(38)80162-2
209.
209. K. Fuchs, “ The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Cambridge Philos. Soc. 34, 100108 (1938).
http://dx.doi.org/10.1017/S0305004100019952
210.
210. R. B. Dingle, “ The electrical conductivity of thin wires,” Proc. R. Soc. London, Ser. A 201, 545560 (1950).
http://dx.doi.org/10.1098/rspa.1950.0077
211.
211. R. Berman, E. L. Foster, and J. M. Ziman, “ Thermal conduction in artificial sapphire crystals at low temperatures. I. Nearly perfect crystals,” Proc. R. Soc. London, Ser. A 231, 130144 (1955).
http://dx.doi.org/10.1098/rspa.1955.0161
212.
212. Z. Wang and N. Mingo, “ Absence of Casimir regime in two-dimensional nanoribbon phonon conduction,” Appl. Phys. Lett. 99, 101903 (2011).
http://dx.doi.org/10.1063/1.3635394
213.
213. A. Mavrokefalos, M. T. Pettes, F. Zhou, and L. Shi, “ Four-probe measurements of the in-plane thermoelectric properties of nanofilms,” Rev. Sci. Instrum. 78, 034901 (2007).
http://dx.doi.org/10.1063/1.2712894
214.
214. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J. R. Heath, “ Reduction of thermal conductivity in phononic nanomesh structures,” Nat. Nanotechnol. 5, 718721 (2010).
http://dx.doi.org/10.1038/nnano.2010.149
215.
215. J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, “ Holey silicon as an efficient thermoelectric material,” Nano Lett. 10, 42794283 (2010).
http://dx.doi.org/10.1021/nl102931z
216.
216. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, and A. Majumdar, “ Measuring thermal and thermoelectric properties of one–dimensional nanostructures using a microfabricated device,” J. Heat Transfer 125, 881888 (2003).
http://dx.doi.org/10.1115/1.1597619
217.
217. A. I. Persson, Y. K. Koh, D. G. Cahill, L. Samuelson, and H. Linke, “ Thermal conductance of InAs nanowire composites,” Nano Lett. 9, 44844488 (2009).
http://dx.doi.org/10.1021/nl902809j
218.
218. J. P. Feser and D. G. Cahill, “ Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots,” Rev. Sci. Instrum. 83, 104901 (2012).
http://dx.doi.org/10.1063/1.4757863
219.
219. F. Zhou, A. L. Moore, J. Bolinsson, A. Persson, L. Froberg, M. T. Pettes, H. Kong, L. Rabenberg, P. Caroff, D. A. Stewart, N. Mingo, K. A. Dick, L. Samuelson, H. Linke, and L. Shi, “ Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases,” Phys. Rev. B 83, 205416 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.205416
220.
220. A. Mavrokefalos, A. L. Moore, M. T. Pettes, L. Shi, W. Wang, and X. Li, “ Nanowires, thermoelectric and structural characterizations of individual electrodeposited bismuth telluride,” J. Appl. Phys. 105, 104318 (2009).
http://dx.doi.org/10.1063/1.3133145
221.
221. L. Shi, Q. Hao, C. Yu, N. Mingo, X. Kong, and Z. Wang, “ Thermal conductivities of individual tin dioxide nanobelts,” Appl. Phys. Lett. 84, 26382640 (2004).
http://dx.doi.org/10.1063/1.1697622
222.
222. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, “ Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 29342936 (2003).
http://dx.doi.org/10.1063/1.1616981
223.
223. A. L. Moore, M. T. Pettes, F. Zhou, and L. Shi, “ Thermal conductivity suppression in bismuth nanowires,” J. Appl. Phys. 106, 034310 (2009).
http://dx.doi.org/10.1063/1.3191657
224.
224. F. Zhou, A. L. Moore, M. T. Pettes, Y. Lee, J. H. Seol, Q. L. Ye, L. Rabenberg, and L. Shi, “ Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires,” J. Phys. D: Appl. Phys. 43, 025406 (2010).
http://dx.doi.org/10.1088/0022-3727/43/2/025406
225.
225. H. Kim, I. Kim, H.-j. Choi, and W. Kim, “ Thermal conductivities of Si1-xGex nanowires with different germanium concentrations and diameters,” Appl. Phys. Lett. 96, 233106 (2010).
http://dx.doi.org/10.1063/1.3443707
226.
226. N. Mingo, “ Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations,” Phys. Rev. B 68, 113308 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.113308
227.
227. D. Morelli, J. Heremans, and G. Slack, “ Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III–V semiconductors,” Phys. Rev. B 66, 195304 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195304
228.
228. Z. Wang and N. Mingo, “ Diameter dependence of SiGe nanowire thermal conductivity,” Appl. Phys. Lett. 97, 101903 (2010).
http://dx.doi.org/10.1063/1.3486171
229.
229. J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, “ Mesoscopic size effects on the thermal conductance of silicon nanowire,” Nano Lett. 9, 18611865 (2009).
http://dx.doi.org/10.1021/nl803844j
230.
230. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, “ Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163167 (2008).
http://dx.doi.org/10.1038/nature06381
231.
231. L. Shi, “ Thermal and thermoelectric transport in nanostructures and low-dimensional systems,” Nanoscale Microscale Thermophys. Eng. 16, 79116 (2012).
http://dx.doi.org/10.1080/15567265.2012.667514
232.
232. K. Hippalgaonkar, B. Huang, R. Chen, K. Sawyer, P. Ercius, and A. Majumdar, “ Fabrication of microdevices with integrated nanowires for investigating low-dimensional phonon transport,” Nano Lett. 10, 43414348 (2010).
http://dx.doi.org/10.1021/nl101671r
233.
233. A. L. Moore, S. K. Saha, R. S. Prasher, and L. Shi, “ Phonon backscattering and thermal conductivity suppression in sawtooth nanowires,” Appl. Phys. Lett. 93, 083112 (2008).
http://dx.doi.org/10.1063/1.2970044
234.
234. A. Eucken, Forsch. Geb. Ingenieurwes. 353, 16 (1932).
235.
235. S. Hyun and S. Torquato, “ Optimal and manufacturable two-dimensional, Kagome-like cellular solids,” J. Mater. Res. 17, 137 (2002).
http://dx.doi.org/10.1557/JMR.2002.0021
236.
236. D. G. Cahill, M. Katiyar, and J. R. Abelson, “ Thermal conductivity of a-Si:H thin films,” Phys. Rev. B 50, 60776081 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.6077
237.
237. J. Zou and A. Balandin, “ Phonon heat conduction in a semiconductor nanowire,” J. Appl. Phys. 89, 29322938 (2001).
http://dx.doi.org/10.1063/1.1345515
238.
238. P. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “ Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires,” Phys. Rev. Lett. 102, 125503 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.125503
239.
239. J. Sadhu and S. Sinha, “ Room-temperature phonon boundary scattering below the Casimir limit,” Phys. Rev. B 84, 115450 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.115450
240.
240. J. Carrete, L. J. Gallego, L. M. Varela, and N. Mingo, “ Surface roughness and thermal conductivity of semiconductor nanowires: Going below the Casimir limit,” Phys. Rev. B 84, 075403 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075403
241.
241. Y. He and G. Galli, “ Microscopic origin of the reduced thermal conductivity of silicon nanowires,” Phys. Rev. Lett. 108, 215901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.215901
242.
242. T. Klitsner and R. O. Pohl, “ Phonon scattering at silicon crystal surfaces,” Phys. Rev. B 36, 65516565 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.6551
243.
243. A. I. Hochbaum, D. Gargas, Y. J. Hwang, and P. Yang, “ Single crystalline mesoporous silicon nanowires,” Nano Lett. 9, 35503554 (2009).
http://dx.doi.org/10.1021/nl9017594
244.
244. G. S. Oehrlein, “ Dry etching damage of silicon: A review,” Mater. Sci. Eng., B 4, 441450 (1989).
http://dx.doi.org/10.1016/0921-5107(89)90284-5
245.
245. J. Lim, K. Hippalgaonkar, S. C. Andrews, A. Majumdar, and P. Yang, “ Quantifying surface roughness effects on phonon transport in silicon nanowires,” Nano Lett. 12, 24752482 (2012).
http://dx.doi.org/10.1021/nl3005868
246.
246. J. D. Bernal, “ The structure of graphite,” Proc. R. Soc. London, Ser. A 106, 749773 (1924).
http://dx.doi.org/10.1098/rspa.1924.0101
247.
247. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “ The electronic properties of graphene,” Rev. Mod. Phys. 81, 109161 (2009).
http://dx.doi.org/10.1103/RevModPhys.81.109
248.
248. R. Nicklow, N. Wakabayashi, and H. G. Smith, “ Lattice dynamics of pyrolytic graphite,” Phys. Rev. B 5, 49514962 (1972).
http://dx.doi.org/10.1103/PhysRevB.5.4951
249.
249. R. Al-Jishi and G. Dresselhaus, “ Lattice-dynamical model for graphite,” Phys. Rev. B 26, 45144522 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.4514
250.
250. D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, “ Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering,” Phys. Rev. B 79, 155413 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.155413
251.
251. L. Lindsay, D. A. Broido, and N. Mingo, “ Flexural phonons and thermal transport in multilayer graphene and graphite,” Phys. Rev. B 83, 235428 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235428
252.
252. L. Lindsay, D. A. Broido, and N. Mingo, “ Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit,” Phys. Rev. B 82, 161402 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.161402
253.
253. P. G. Klemens, “ Theory of thermal conduction in thin ceramic films,” Int. J. Thermophys. 22, 265275 (2001).
http://dx.doi.org/10.1023/A:1006776107140
254.
254. N. Mingo and D. Broido, “ Length dependence of carbon nanotube thermal conductivity and the “Problem of long waves,” Nano Lett. 5, 12211225 (2005).
http://dx.doi.org/10.1021/nl050714d
255.
255. S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, “ Dimensional crossover of thermal transport in few-layer graphene,” Nature Mater. 9, 555558 (2010).
http://dx.doi.org/10.1038/nmat2753
256.
256. C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair, and A. K. Geim, “ Thermal conductivity of graphene in Corbino Membrane Geometry,” ACS Nano 4, 18891892 (2010).
http://dx.doi.org/10.1021/nn9016229
257.
257. W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, “ Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10, 16451651 (2010).
http://dx.doi.org/10.1021/nl9041966
258.
258. S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, “ Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments,” ACS Nano 5, 321328 (2011).
http://dx.doi.org/10.1021/nn102915x
259.
259. J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, “ Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy,” Phys. Rev. B 83, 081419 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.081419
260.
260. J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, “ Two–dimensional phonon transport in supported graphene,” Science 328, 213216 (2010).
http://dx.doi.org/10.1126/science.1184014
261.
261. W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, “ Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite,” Nano Lett. 10, 39093913 (2010).
http://dx.doi.org/10.1021/nl101613u
262.
262. M. M. Sadeghi, I. Jo, and L. Shi, “ Phonon-Interface Scattering in Multi-layered Graphene on an Amorphous Support,” Proceedings of National Academy of Sciences 110, 1632116326 (2013).
http://dx.doi.org/10.1073/pnas.1306175110
263.
263. Y. S. Touloukian and E. H. Buyco, Thermophysical Properties of Matter (IFI/Plenum, New York, 1970).
264.
264. T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, “ Bond softening in monolayer graphite formed on transition-metal carbide surfaces,” Phys. Rev. B 42, 1146911478 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.11469
265.
265. D. Farias, K. Rieder, A. Shikin, V. Adamchuk, T. Tanaka, and C. Oshima, “ Modification of the surface phonon dispersion of a graphite monolayer adsorbed on Ni (111) caused by intercalation of Yb, Cu and Ag,” Surf. Sci. 454, 437441 (2000).
http://dx.doi.org/10.1016/S0039-6028(00)00253-3
266.
266. T. N. Theis and P. M. Solomon, “ In quest of the “next switch”: Prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE 98, 20052014 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2066531
267.
267. E. Pop, S. Sinha, and K. E. Goodson, “ Heat generation and transport in nanometer-scale transistors,” Proc. IEEE 94, 15871601 (2006).
http://dx.doi.org/10.1109/JPROC.2006.879794
268.
268. H. -S. P. Wong, S. Raoux, S. Kim, J. L. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E. Goodson, “ Phase change memory,” Proc. IEEE 98, 22012227 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070050
269.
269. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “ Phase change memory technology,” J. Vac. Sci. Technol. B 28, 223262 (2010).
http://dx.doi.org/10.1116/1.3301579
270.
270. H. Altug, D. Eglund, and J. Vuckovic, “ Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 484 (2006).
http://dx.doi.org/10.1038/nphys343
271.
271. B. Concoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O'Faolain, and T. Krauss, “ Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics 3, 206210 (2009).
http://dx.doi.org/10.1038/nphoton.2009.28
272.
272. A. Sarua, H. Ji, K. Hilton, D. Wallis, M. Uren, T. Martin, and M. Kuball, “ Thermal boundary resistance between GaN and substrate in AlGaN/GaN electronic devices,” IEEE Trans. Electron Devices 54, 31523158 (2007).
http://dx.doi.org/10.1109/TED.2007.908874
273.
273. M. Alomari, A. Dussaigne, D. Martin, N. Grandjean, C. Gaquiere, and E. Kohn, “ AlGaN/GaN HEMT on (111) single crystalline diamond,” Electron. Lett. 46, 299301 (2010).
http://dx.doi.org/10.1049/el.2010.2937
274.
274. J. Kuzmik, S. Bychikhin, D. Pogany, E. Pichonat, O. Lancry, C. Gaquiere, G. Tsiakatouras, G. Deligeorgis, and A. Georgakilas, “ Thermal characterization of MBE-grown GaN/AlGaN/GaN device on single crystalline diamond,” J. Appl. Phys. 109, 086106 (2011).
http://dx.doi.org/10.1063/1.3581032
275.
275. E. Pop, “ Energy dissipation and transport in nanoscale devices,” Nano Res. 3, 147169 (2010).
http://dx.doi.org/10.1007/s12274-010-1019-z
276.
276. M. Pedram and S. Nazarian, “ Thermal modeling, analysis, and management in VLSI circuits: Principles and methods,” Proc. IEEE 94, 14871501 (2006).
http://dx.doi.org/10.1109/JPROC.2006.879797
277.
277. D. A. B. Miller, “ Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 11661185 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2014298
278.
278. D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H. -S. P. Wong, “ Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing,” Nano Lett. 12, 2179 (2012).
http://dx.doi.org/10.1021/nl201040y
279.
279. C. Ahn, B. Lee, R. G. D. Jeyasingh, M. Asheghi, G. A. M. Hurkx, K. E. Goodson, and H. -S. P. Wong, “ Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage,” J. Appl. Phys. 110, 114520 (2011).
http://dx.doi.org/10.1063/1.3667295
280.
280. J. Lee, T. Kodama, Y. Won, M. Asheghi, and K. E. Goodson, “ Phase purity and thermoelectric properties of ge2sb2te5 films down to 25 nm thickness,” J. Appl. Phys. 112, 014902 (2012).
http://dx.doi.org/10.1063/1.4731252
281.
281. Y. Zhang, J. Feng, Y. Zhang, Z. Zhang, Y. Lin, T. Tang, B. Cai, and B. Chen, “ Multi-bit storage in reset process of phase change access memory (PRAM),” Phys. Status Solidi (RRL) 1, R28R30 (2007).
http://dx.doi.org/10.1002/pssr.200600020
282.
282. G. Oh, Y. Park, J. Lee, D. Im, J. Bae, D. Kim, D. Ahn, H. Horii, S. Park, H. Yoon, I. Park, Y. Ko, U.-I. Chung, and J. Moon, “ Parallel multi-confined (PMC) cell technology for high density MLC PRAM,” Dig. Tech. Pap. - Symp. VLSI Technol. 2009, 220221.
283.
283. D. Kuzum, R. G. D. Jeyasingh, and H. -S. P. Wong, “ Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning,” Tech. Dig. - Int. Electron Devices Meet. 2011, 30313034.
http://dx.doi.org/10.1109/IEDM.2011.6131643
284.
284. E. Bozorg-Grayeli, J. P. Reifenberg, M. Asheghi, H. -S. P. Wong, and K. E. Goodson, “ Thermal transport in phase change memory materials,” Annu. Rev. Heat Transfer 15, 397428 (2012).
285.
285. H.-K. Lyeo, D. G. Cahill, B.-S. Lee, J. R. Abelson, M.-H. Kwon, K.-B. Kim, S. G. Bishop, and B. ki Cheong, “ Thermal conductivity of phase-change material Ge2Sb2Te5,” Appl. Phys. Lett. 89, 151904 (2006).
http://dx.doi.org/10.1063/1.2359354
286.
286. J. P. Reifenberg, M. A. Panzer, S. Kim, A. M. Gibby, Y. Zhang, S. Wong, H. -S. P. Wong, E. Pop, and K. E. Goodson, “ Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91, 111904 (2007).
http://dx.doi.org/10.1063/1.2784169
287.
287. W. P. Risk, C. T. Rettner, and S. Raoux, “ Thermal conductivities and phase transition temperatures of various phase-change materials measured by the 3 omega method,” Appl. Phys. Lett. 94, 101906 (2009).
http://dx.doi.org/10.1063/1.3097353
288.
288. J. Lee, Z. Li, J. P. Reifenberg, S. Lee, R. Sinclair, M. Asheghi, and K. E. Goodson, “ Thermal conductivity anisotropy and grain structure in Ge2Sb2Te5 films,” J. Appl. Phys. 109, 084902 (2011).
http://dx.doi.org/10.1063/1.3573505
289.
289. I. R. Chen and E. Pop, “ Compact thermal model for vertical nanowire phase-change memory cells,” IEEE Trans. Electron Devices 56, 15231528 (2009).
http://dx.doi.org/10.1109/TED.2009.2021364
290.
290. E.-K. Kim, S.-I. Kwun, S.-M. Lee, H. Seo, and J.-G. Yoon, “ Thermal boundary resistance at Ge2Sb2Te5/ZnS:SiO2 interface,” Appl. Phys. Lett. 76, 38643866 (2000).
http://dx.doi.org/10.1063/1.126852
291.
291. J. Reifenberg, D. Kencke, and K. Goodson, “ The impact of thermal boundary resistance in phase-change memory devices,” IEEE Electron Device Letters 29, 11121114 (2008).
http://dx.doi.org/10.1109/LED.2008.2003012
292.
292. J. Reifenberg, K.-W. Chang, M. Panzer, S. Kim, J. Rowlette, M. Asheghi, H. -S. P. Wong, and K. Goodson, “ Thermal boundary resistance measurements for phase-change memory devices,” IEEE Electron Device Letters 31, 5658 (2010).
http://dx.doi.org/10.1109/LED.2009.2035139
293.
293. J. Lee, M. Asheghi, and K. Goodson, “ Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling,” Nanotechnology 23, 205201 (2012).
http://dx.doi.org/10.1088/0957-4484/23/20/205201
294.
294. T. Kato and K. Tanaka, “ Electronic properties of amorphous and crystalline Ge2Sb2Te5 Films,” Jpn. J. Appl. Phys. Part 1 44, 73407344 (2005).
http://dx.doi.org/10.1143/JJAP.44.7340
295.
295. F. Xiong, A. Liao, and E. Pop, “ Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters,” Appl. Phys. Lett. 95, 243103 (2009).
http://dx.doi.org/10.1063/1.3273370
296.
296. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “ Low-power switching of phase-change materials with carbon nanotube electrodes,” Science 332, 568570 (2011).
http://dx.doi.org/10.1126/science.1201938
297.
297. J. Liang, R. G. D. Jeyasingh, H. Y. Chen, and H. -S. P. Wong, “ An ultra-low reset current cross-point phase change memory with carbon nanotube electrodes,” IEEE Trans. Electron Devices 59, 11551163 (2012).
http://dx.doi.org/10.1109/TED.2012.2184542
298.
298. U. Russo, D. Ielmini, A. Redaelli, and A. L. Lacaita, “ Modeling of programming and read performance in phase-change memories–part II: Program disturb and mixed-scaling approach,” IEEE Trans. Electron Devices 55, 515522 (2008).
http://dx.doi.org/10.1109/TED.2007.913573
299.
299. S. Kim, B. Lee, M. Asheghi, G. A. M. Hurkx, J. Reifenberg, K. Goodson, and H. -S. P. Wong, “ Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage,” IEEE Int. Reliab. Phys. Symp. Proc. 2010, 99103.
http://dx.doi.org/10.1109/IRPS.2010.5488847
300.
300. L. Pan and D. B. Bogy, “ Data storage: Heat-assisted magnetic recording,” Nat. Photonics 3, 189190 (2009).
http://dx.doi.org/10.1038/nphoton.2009.40
301.
301. R. Fernandez, D. Teweldebrhan, C. Zhang, A. Balandin, and S. Khizroev, “ A comparative analysis of Ag and Cu heat sink layers in L10-FePt films for heat-assisted magnetic recording,” J. Appl. Phys. 109, 07B763 (2011).
http://dx.doi.org/10.1063/1.3564968
302.
302. D.-S. Lim, M.-H. Shin, H.-S. Oh, and Y.-J. Kim, “ Opto-thermal analysis of novel heat assisted magnetic recording media based on surface plasmon enhancement,” IEEE Trans. Magn. 45, 38443847 (2009).
http://dx.doi.org/10.1109/TMAG.2009.2022180
303.
303. Y. Ma, L. Gonzaga, C. An, and B. Liu, “ Effect of laser heating duration on lubricant depletion in heat assisted magnetic recording,” IEEE Trans. Magn. 47, 34453448 (2011).
http://dx.doi.org/10.1109/TMAG.2011.2157475
304.
304. R. Chau, B. Doyle, S. Datta, J. Kavalieros, and K. Zhang, “ Integrated nanoelectronics for the future,” Nature Mater. 6, 810812 (2007).
http://dx.doi.org/10.1038/nmat2014
305.
305. J. A. del Alamo, “ Nanometre-scale electronics with III-V compound semiconductors,” Nature 479, 317323 (2011).
http://dx.doi.org/10.1038/nature10677
306.
306. P. Avouris and R. Martel, “ Progress in carbon nanotube electronics and photonics,” MRS Bull. 35, 306313 (2010).
http://dx.doi.org/10.1557/mrs2010.553
307.
307. K. Saraswat, C. O. Chui, T. Krishnamohan, D. Kim, A. Nayfeh, and A. Pethe, “ High performance germanium MOSFETs,” Mater. Sci. Eng., B 135, 242249 (2006).
http://dx.doi.org/10.1016/j.mseb.2006.08.014
308.
308. N. Collaert, A. De Keersgieter, A. Dixit, I. Ferain, L. S. Lai, D. Lenoble, A. Mercha, A. Nackaerts, B. J. Pawlak, R. Rooyackers, T. Schulz, K. T. San, N. J. Son, M. J. H. Van Dal, P. Verheyen, K. von Arnim, L. Witters, K. De Meyer, S. Biesemans, and M. Jurczak, “ Multi-gate devices for the 32 nm technology node and beyond,” Solid-State Electron. 52, 12911296 (2008).
http://dx.doi.org/10.1016/j.sse.2008.04.018
309.
309. E. Pop, R. W. Dutton, and K. E. Goodson, “ Monte Carlo simulation of Joule heating in bulk and strained silicon,” Appl. Phys. Lett. 86, 0821013 (2005).
http://dx.doi.org/10.1063/1.1870106
310.
310. V. Perebeinos and P. Avouris, “ Inelastic scattering and current saturation in graphene,” Phys. Rev. B 81, 195442 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.195442
311.
311. K. Kang, D. Abdula, D. G. Cahill, and M. Shim, “ Lifetimes of optical phonons in graphene and graphite by time-resolved incoherent anti-Stokes Raman scattering,” Phys. Rev. B 81, 165405 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165405
312.
312. Z.-Y. Ong, E. Pop, and J. Shiomi, “ Reduction of phonon lifetimes and thermal conductivity of a carbon nanotube on amorphous silica,” Phys. Rev. B 84, 165418 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165418
313.
313. Z.-Y. Ong and E. Pop, “ Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2,” Phys. Rev. B 81, 155408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155408
314.
314. D. K. Schroder and J. A. Babcock, “ Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phys. 94, 118 (2003).
http://dx.doi.org/10.1063/1.1567461
315.
315. W. Liu, K. Etessam-Yazdani, R. Hussin, and M. Asheghi, “ Modeling and data for thermal conductivity of ultrathin single-crystal SOI layers at high temperature,” IEEE Trans. Electron Devices 53, 18681876 (2006).
http://dx.doi.org/10.1109/TED.2006.877874
316.
316. S. Sinha, E. Pop, R. W. Dutton, and K. E. Goodson, “ Non-equilibrium phonon distributions in sub-100 nm silicon transistors,” J. Heat Transfer 128, 638647 (2006).
http://dx.doi.org/10.1115/1.2194041
317.
317. M.-H. Bae, S. Islam, V. E. Dorgan, and E. Pop, “ Scaling of high-field transport and localized heating in graphene transistors,” ACS Nano 5, 79367944 (2011).
http://dx.doi.org/10.1021/nn202239y
318.
318. A. D. Liao, J. Z. Wu, X. Wang, K. Tahy, D. Jena, H. Dai, and E. Pop, “ Thermally limited current carrying ability of graphene nanoribbons,” Phys. Rev. Lett. 106, 256801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.256801
319.
319. A. Behnam, A. S. Lyons, M.-H. Bae, E. K. Chow, S. Islam, C. M. Neumann, and E. Pop, “ Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition,” Nano Lett. 12, 44244430 (2012).
http://dx.doi.org/10.1021/nl300584r
320.
320. M.-H. Bae, Z. Li, Z. Aksamija, P. Martin, F. Xiong, Z.-Y. Ong, I. Knezevic, and E. Pop, “ Ballistic to diffusive crossover of heat flow in graphene ribbons,” Nat. Commun. 4, 1734 (2013).
http://dx.doi.org/10.1038/ncomms2755
321.
321. S. Islam, Z. Li, V. Dorgan, M.-H. Bae, and E. Pop, “ Role of Joule heating on current saturation and transient behavior of graphene transistors,” IEEE Electron Device Lett. 34, 166168 (2013).
http://dx.doi.org/10.1109/LED.2012.2230393
322.
322. E. Pop, “ The role of electrical and thermal contact resistance for Joule breakdown of single-wall carbon nanotubes,” Nanotechnology 19, 295202 (2008).
http://dx.doi.org/10.1088/0957-4484/19/29/295202
323.
323. A. Liao, R. Alizadegan, Z.-Y. Ong, S. Dutta, F. Xiong, K. J. Hsia, and E. Pop, “ Thermal dissipation and variability in electrical breakdown of carbon nanotube devices,” Phys. Rev. B 82, 205406 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.205406
324.
324. D. Vasileska, K. Raleva, and S. M. Goodnick, “ Self-heating effects in nanoscale FD SOI devices: The role of the substrate, boundary conditions at various interfaces, and the dielectric material type for the box,” IEEE Trans. Electron Devices 56, 30643071 (2009).
http://dx.doi.org/10.1109/TED.2009.2032615
325.
325. T. Takahashi, N. Beppu, K. Chen, S. Oda, and K. Uchida, “ Thermal-aware device design of nanoscale bulk/SOI FinFETs: Suppression of operation temperature and its variability,” Tech. Dig. - Int. Electron Devices Meet. 2011, 34613464.
http://dx.doi.org/10.1109/IEDM.2011.6131672
326.
326. T. Sadi, R. Kelsall, N. Pilgrim, J.-L. Thobel, and F. Dessenne, “ Monte Carlo study of self-heating in nanoscale devices,” J. Comput. Electron. 11, 118128 (2012).
http://dx.doi.org/10.1007/s10825-012-0395-x
327.
327. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “ Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” J. Appl. Phys. 97, 0237067 (2005).
http://dx.doi.org/10.1063/1.1834982
328.
328. R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read, and S. Peddeti, “ Resistivity dominated by surface scattering in sub-50 nm Cu wires,” Appl. Phys. Lett. 96, 0421163 (2010).
http://dx.doi.org/10.1063/1.3292022
329.
329. S. Yoneoka, J. Lee, M. Liger, G. Yama, T. Kodama, M. Gunji, J. Provine, R. T. Howe, K. E. Goodson, and T. W. Kenny, “ Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness,” Nano Lett. 12, 683686 (2012).
http://dx.doi.org/10.1021/nl203548w
330.
330. F. Völklein, H. Reith, T. W. Cornelius, M. Rauber, and R. Neumann, “ The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires,” Nanotechnology 20, 325706 (2009).
http://dx.doi.org/10.1088/0957-4484/20/32/325706
331.
331. H. Sevinçli and G. Cuniberti, “ Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons,” Phys. Rev. B 81, 113401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.113401
332.
332. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “ Quantum cascade laser,” Science 264, 553556 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
333.
333. B. Williams, “ Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517525 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
334.
334. M. Razeghi, S. Slivken, Y. Bai, B. Gokden, and S. R. Darvish, “ High power quantum cascade lasers,” New J. Phys. 11, 125017 (2009).
http://dx.doi.org/10.1088/1367-2630/11/12/125017
335.
335. K. Goodson, K. Kurabayashi, and R. Pease, “ Improved heat sinking for laser-diode arrays using microchannels in CVD diamond,” IEEE Trans. Compon., Packag. Manuf. Technol., Part B 20, 104109 (1997).
http://dx.doi.org/10.1109/96.554536
336.
336. J. Cho, E. Bozorg-Grayeli, D. Altman, M. Asheghi, and K. Goodson, “ Low thermal resistances at GaN-SiC interfaces for HEMT technology,” IEEE Electron Device Letters 33, 378380 (2012).
http://dx.doi.org/10.1109/LED.2011.2181481
337.
337. J. Cho, Z. Li, E. Bozorg-Grayeli, T. Kodama, D. Francis, F. Ejeckam, F. Faili, M. Asheghi, and K. E. Goodson, “ Thermal characterization of GaN-on-diamond substrates for HEMT applications,” IEEE Trans. Compon. Packag. Manuf. Technol. 3, 7985 (2013).
http://dx.doi.org/10.1109/TCPMT.2012.2223818
338.
338. N. Faleev and I. Levin, “ Strain and crystal defects in thin AlN/GaN structures on (0001) SiC,” J. Appl. Phys. 107, 113529 (2010).
http://dx.doi.org/10.1063/1.3437632
339.
339. K. E. Goodson, “ Thermal conduction in nonhomogeneous CVD diamond layers in electronic microstructures,” J. Heat Transfer 118, 279286 (1996).
http://dx.doi.org/10.1115/1.2825842
340.
340. K. E. Goodson, O. W. Kading, M. Rosler, and R. Zachai, “ Experimental investigation of thermal conduction normal to diamond-silicon boundaries,” J. Appl. Phys. 77, 13851392 (1995).
http://dx.doi.org/10.1063/1.358950
341.
341. M. Touzelbaev and K. Goodson, “ Impact of nucleation density on thermal resistance near diamond-substrate boundaries,” J. Thermophys. Heat Transfer 11, 506512 (1997).
http://dx.doi.org/10.2514/2.6291
342.
342. D. R. Clarke and S. R. Phillpot, “ Thermal barrier coating materials,” Mater. Today 8, 2229 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)70934-2
343.
343. D. R. Olander, Fundamental Aspects of Nuclear Fuel Elements (NTIS US Department of Commerce, 1976).
344.
344. C. Kittel, “ Interpretation of the thermal conductivity of glasses,” Phys. Rev. 75, 972974 (1949).
http://dx.doi.org/10.1103/PhysRev.75.972
345.
345. P. G. Klemens, Solid State Physics (Academic Press, New York, 1958), Vol. 7, Chap. Klemens55, pp. 198.
346.
346. P. G. Klemens, “ The scattering of low-frequency lattice waves by static imperfections,” Proc. Phys. Soc., London, Sect. A 68, 11131128 (1955).
http://dx.doi.org/10.1088/0370-1298/68/12/303
347.
347. J. Callaway, “ Model for lattice thermal conductivity at low temperatures,” Phys. Rev. 113, 10461051 (1959).
http://dx.doi.org/10.1103/PhysRev.113.1046
348.
348. J. Callaway and H. C. von Baeyer, “ Effect of point imperfections on lattice thermal conductivity,” Phys. Rev. 120, 11491154 (1960).
http://dx.doi.org/10.1103/PhysRev.120.1149
349.
349. M. Roufosse and P. G. Klemens, “ Lattice thermal conductivity of minerals at high temperatures,” J. Geophys. Res. 79, 703705, doi:10.1029/JB079i005p00703 (1974).
http://dx.doi.org/10.1029/JB079i005p00703
350.
350. M. Roufosse and P. G. Klemens, “ Thermal conductivity of complex dielectric crystals,” Phys. Rev. B 7, 5379 (1973).
http://dx.doi.org/10.1103/PhysRevB.7.5379
351.
351. A. Mathiessen, Ann. Phys. 7, 892 (1864).
352.
352. A. Mathiessen, Ann. Phys. 7, 761 (1864).
353.
353. L. H. Wei, P. K. Kuo, R. L. Thomas, T. R. Anthony, and W. F. Banholzer, “ Thermal-conductivity of isotopically modified single-crystal diamond,” Phys. Rev. Lett. 70, 37643767 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3764
354.
354. T. Watanabe, S. G. Srivilliputhur, P. K. Schelling, J. S. Tulenko, S. B. Sinnott, and S. R. Phillpot, “ Thermal transport in off-stoichiometric uranium dioxide by atomic level simulation,” J. Am. Ceram. Soc. 92, 850856 (2009).
http://dx.doi.org/10.1111/j.1551-2916.2009.02966.x
355.
355. Z. Qu, T. D. Sparks, W. Pan, and D. R. Clarke, “ Thermal conductivity of the gadolinium calcium silicate apatites: Effect of different point defect types,” Acta Mater. 59, 3841 (2011).
http://dx.doi.org/10.1016/j.actamat.2011.03.008
356.
356. H.-S. Yang, G.-R. Bai, L. J. Thompson, and J. A. Eastman, “ Interfacial thermal resistance in nanocrystalline yittria stabilized zirconia,” Acta Mater. 50, 23092317 (2002).
http://dx.doi.org/10.1016/S1359-6454(02)00057-5
357.
357. D. Zhu and R. A. Miller, “ Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions,” J. Therm. Spray Technol. 9, 175180 (2000).
http://dx.doi.org/10.1361/105996300770349890
358.
358. D. Zhu, R. A. Miller, B. A. Nagaraj, and R. W. Bruce, “ Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady state laser heat flux technique,” Surf. Coat. Technol. 138, 18 (2001).
http://dx.doi.org/10.1016/S0257-8972(00)01145-2
359.
359. C. Mercer, J. R. Williams, D. R. Clarke, and A. G. Evans, “ On a ferroelastic mechanism governing the toughness of metastable tetragonal-prime (t) yttria-stabilized zirconia,” Proc. R. Soc. London, Ser. A 463, 1393 (2007).
http://dx.doi.org/10.1098/rspa.2007.1829
360.
360. P. K. Schelling and S. R. Phillpot, “ Mechanism of thermal transport in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation,” J. Am. Ceram. Soc. 84, 29973007 (2001).
http://dx.doi.org/10.1111/j.1151-2916.2001.tb01127.x
361.
361. P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, “ Diffusons, locons, propagons: Character of atomic vibrations in glasses,” Philos. Mag. B 79, 17151731 (1999).
http://dx.doi.org/10.1080/13642819908223054
362.
362. P. G. Lucuta, H. Matzke, and I. J. Hastings, “ A pragmatic approach to modeling thermal conductivity of irradiated UO2 fuel: Review and recommendations,” J. Nucl. Mater. 232, 166180 (1996).
http://dx.doi.org/10.1016/S0022-3115(96)00404-7
363.
363. I. L. F. Ray and H. Matzke, “ Observation of a high burnup rim-type structure in an advanced plutonium-uranium carbide fuel,” J. Nucl. Mater. 250, 242 (1997).
http://dx.doi.org/10.1016/S0022-3115(97)00301-2
364.
364. H. Matzke, “ On the rim effect in high burnup UO2 LWR fuels,” J. Nucl. Mater. 189, 141 (1992).
http://dx.doi.org/10.1016/0022-3115(92)90428-N
365.
365. C. Ronchi, M. Sheindlin, D. Saticu, and M. Kinoshita, “ Effect of burn-up on the thermal conductivity of uranium dioxide up to 100.000 Mwd t1,” J. Nucl. Mater. 327, 5876 (2005).
http://dx.doi.org/10.1016/j.jnucmat.2004.01.018
366.
366. Y. Wang, K. Fujinami, R. Zhang, C. Wan, Y. Ba, and K. Koumoto, “ Interfacial thermal resistance and thermal conductivity in nanograined SrTiO3,” Appl. Phys. Express 3, 031101 (2010).
http://dx.doi.org/10.1143/APEX.3.031101
367.
367. A. Limarga and D. R. Clarke, “ The grain size and temperature dependence of the thermal conductivity of polycrystalline, tetragonal yttria-stabilized zirconia,” Appl. Phys. Lett. 98, 211906 (2011).
http://dx.doi.org/10.1063/1.3593383
368.
368. L. Braginsky, V. Shklover, H. Hofman, and P. Bowen, “ High-temperature thermal conductivity of porous Al2O3 nanostructures,” Phys. Rev. B 70, 134201 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.134201
369.
369. B. Aurivillius, “ Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12,” Ark. Kemi 1, 499512 (1950).
370.
370. S. Ruddlesden and P. Popper, “ The compound Sr3Ti2O7 and its structure,” Acta Crystallogr. 11, 54 (1958).
http://dx.doi.org/10.1107/S0365110X58000128
371.
371. A. Chernatynskiy, R. W. Grimes, M. A. Zurbuchen, D. R. Clarke, and S. R. Phillpot, “ Crossover in thermal transport properties of natural, perovskite-structured superlattices,” Appl. Phys. Lett. 95, 161906 (2009).
http://dx.doi.org/10.1063/1.3253421
372.
372. M. R. Winter and D. R. Clarke, “ Oxide materials with low thermal conductivity,” J. Am. Ceram. Soc. 90, 533540 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2006.01410.x
373.
373. Y. Shen, R. M. Leckie, C. G. Levi, and D. R. Clarke, “ Low thermal conductivity without oxygen vacancies in equimolar YO1.5+TaO2.5- And YbO1.5+TaO2.5-stabilized tetragonal zirconia ceramics,” Acta Mater. 58, 44244431 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.04.040
374.
374. R. Vassen, X. Q. Cao, F. Tietz, D. Basu, and D. Stover, “ Zirconates as new materials for thermal barrier coatings,” J. Am. Ceram. Soc. 83, 2023 (2000).
http://dx.doi.org/10.1111/j.1151-2916.2000.tb01506.x
375.
375. W. Ma, D. Mack, J. Malzbender, R. Vassen, and D. Stover, “ Yb2O3 and Gd2O3 doped strontium zirconate for thermal barrier coatings,” J. Eur. Ceram. Soc. 28, 30713081 (2008).
http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.013
376.
376. X. Q. Cao, R. Vassen, F. Tietz, and D. Stoever, “ New double-ceramic-layer thermal barrier coatings based on zirconia rare earth composite oxides,” J. Eur. Ceram. Soc. 26, 247251 (2006).
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.11.007
377.
377. C. L. Wan, Z. Qu, A. B. Du, and W. Pan, “ Order disorder transition and unconventional thermal conductivities of the (Sm1xYbx)2Zr2O7 series,” J. Am. Ceram. Soc. 94, 592 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04113.x
378.
378. H. S. Zhang, S. R. Liao, X. D. Dang, S. K. Guan, and Z. Zhang, “ Preparation and thermal conductivities of Gd2Ce2O7 and (Gd0.9Ca0.1)2Ce2O6.9 ceramics for thermal barrier coatings,” J. Alloys Compd. 509, 12261230 (2011).
http://dx.doi.org/10.1016/j.jallcom.2010.09.196
379.
379. B. Liu, J. Y. Wang, F. Z. Li, and Y. C. Zhou, “ Theoretical elastic stiffness, structural stability and thermal conductivity of La2T2O7 (T = Ge, Ti, Sn, Zr, Hf) pyrochlore,” Acta Mater. 58, 43694377 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.04.031
380.
380. P. K. Schelling, “ Thermal conductivity of A-site doped pyrochlore oxides studied by molecular-dynamics simulation,” Comput. Mater. Sci. 48, 336 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.01.017
381.
381. C. L. Wan, W. Zhang, Y. F. Zhang, Z. Qu, A. B. Du, R. F. Wu, and W. Pan, “ Glasslike thermal conductivity in ytterbium doped lanthanum zirconate pyrochlore,” Acta Mater. 58, 61666172 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.07.035
382.
382. Y. Shen, D. R. Clarke, and P. A. Fuierer, “ Anisotropic thermal conductivity of the aurivillus phase, bismuth titanate (Bi4Ti3O12): A natural nanostructured superlattice,” Appl. Phys. Lett. 93, 102907 (2008).
http://dx.doi.org/10.1063/1.2975163
383.
383. T. D. Sparks, P. A. Fuierer, and D. R. Clarke, “ Anisotropic thermal diffusivity and conductivity of La-doped strontium niobate, Sr2Nb2O7,” J. Am. Ceram. Soc. 93, 1136 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03533.x
384.
384. D. G. Cahill, “ Analysis of heat flow in layered structures for time-domain thermoreflectance,” Rev. Sci. Instrum. 75, 5119 (2004).
http://dx.doi.org/10.1063/1.1819431
385.
385. K. Kang, Y. K. Koh, C. Chiritescu, X. Zheng, and D. G. Cahill, “ Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters,” Rev. Sci. Instrum. 79, 114901 (2008).
http://dx.doi.org/10.1063/1.3020759
386.
386. C. Monachon and L. Weber, “ Thermal boundary conductance of transition metals on diamond,” Emerging Mater. Res. 1, 9098 (2012).
http://dx.doi.org/10.1680/emr.11.00011
387.
387. X. Zheng, D. G. Cahill, P. Krasnochtchekov, R. Averback, and J.-C. Zhao, “ High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann-Franz law,” Acta Mater. 55, 51775185 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.05.037
388.
388. J. C. Duda, P. E. Hopinks, Y. Shen, and M. C. Gupta, “ Exceptionally low thermal conductivities of films of the fullerene derivative PCBM,” Phys. Rev. Lett. 110, 015902 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.015902
389.
389. S. Huxtable, D. Cahill, V. Fauconnier, J. White, and J.-C. Zhao, “ Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials,” Nature Mater. 3, 298301 (2004).
http://dx.doi.org/10.1038/nmat1114
390.
390. J.-C. Zhao, X. Zheng, and D. G. Cahill, “ Thermal conductivity mapping of the NiAl system and the beta-NiAl phase in the NiAlCr system,” Scr. Mater. 66, 935938 (2012).
http://dx.doi.org/10.1016/j.scriptamat.2012.02.035
391.
391. X. Zheng, D. Cahill, and J.-C. Zhao, “ Thermal conductivity imaging of thermal barrier coatings,” Adv. Eng. Mater. 7, 622626 (2005).
http://dx.doi.org/10.1002/adem.200500024
392.
392. E. López-Honorato, C. Chiritescu, P. Xiao, D. G. Cahill, G. Marsh, and T. Abram, “ Thermal conductivity mapping of pyrolytic carbon and silicon carbide coatings on simulated fuel particles by time-domain thermoreflectance,” J. Nucl. Mater. 378, 3539 (2008).
http://dx.doi.org/10.1016/j.jnucmat.2008.04.007
393.
393. W.-P. Hsieh, B. Chen, J. Li, P. Keblinski, and D. Cahill, “ Pressure tuning of the thermal conductivity of the layered muscovite crystal,” Phys. Rev. B 80, 180302 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.180302
394.
394. W.-P. Hsieh, M. D. Losego, P. V. Braun, S. Shenogin, P. Keblinski, and D. G. Cahill, “ Testing the minimum thermal conductivity model for amorphous polymers using high pressure,” Phys. Rev. B 83, 174205 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.174205
395.
395. B. Chen, W.-P. Hsieh, D. G. Cahill, D. R. Trinkle, and J. Li, “ Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried-Schlömann equation,” Phys. Rev. B 83, 132301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.132301
396.
396. D. A. Young, C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “ Heat flow in glasses on a picosecond timescale,” in Phonon Scattering in Condensed Matter, edited by A. C. Anderson and J. P. Wolfe (Springer, Berlin, 1986), p. 49.
397.
397. C. A. Paddock and G. L. Eesley, “ Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285290 (1986).
http://dx.doi.org/10.1063/1.337642
398.
398. A. J. Schmidt, X. Chen, and G. Chen, “ Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance,” Rev. Sci. Instrum. 79, 114902 (2008).
http://dx.doi.org/10.1063/1.3006335
399.
399. A. J. Schmidt, R. Cheaito, and M. Chiesa, “ Characterization of thin metal films via frequency-domain thermoreflectance,” J. Appl. Phys. 107, 024908 (2010).
http://dx.doi.org/10.1063/1.3289907
400.
400. Y. K. Koh, S. L. Singer, W. Kim, J. M. O. Zide, H. Lu, D. G. Cahill, A. Majumdar, and A. C. Gossard, “ Comparison of the 3ω method and time-domain thermoreflectance for measurements of the cross-plane thermal conductivity of epitaxial semiconductors,” J. Appl. Phys. 105, 054303 (2009).
http://dx.doi.org/10.1063/1.3078808
401.
401. Y. Wang, J. Y. Park, Y. K. Koh, and D. G. Cahill, “ Thermoreflectance of metal transducers for time-domain thermoreflectance,” J. Appl. Phys. 108, 043507 (2010).
http://dx.doi.org/10.1063/1.3457151
402.
402. R. B. Wilson, B. A. Apgar, L. W. Martin, and D. G. Cahill, “ Thermoreflectance of metal transducers for optical pump-probe studies of thermal properties,” Opt. Express 20, 2882928838 (2012).
http://dx.doi.org/10.1364/OE.20.028829
403.
403. A. Schmidt, M. Chiesa, X. Chen, and G. Chen, “ An optical pump-probe technique for measuring the thermal conductivity of liquids,” Rev. Sci. Instrum. 79, 064902 (2008).
http://dx.doi.org/10.1063/1.2937458
404.
404. M. A. Panzer, M. Shandalov, J. A. Rowlette, Y. Oshima, Y. W. Chen, P. C. McIntyre, and K. E. Goodson, “ Thermal properties of ultrathin hafnium oxide gate dielectric films,” IEEE Electron Device Lett. 30, 12691271 (2009).
http://dx.doi.org/10.1109/LED.2009.2032937
405.
405. S. H. Firoz, T. Yagi, N. Taketoshi, K. Ishikawa, and T. Baba, “ Direct observation of thermal energy transfer across the thin metal lm on silicon substrates by a rear heatingfront detection thermoreflectance technique,” Meas. Sci. Technol. 22, 024012 (2011).
http://dx.doi.org/10.1088/0957-0233/22/2/024012
406.
406. J.-Y. Park, C.-K. Min, S. Granick, and D. G. Cahill, “ Heat transfer and residence time when water droplets hit a scalding surface,” J. Heat Transfer 134, 101503 (2012).
http://dx.doi.org/10.1115/1.4006802
407.
407. C.-K. Min, J.-Y. Park, D. G. Cahill, and S. Granick, “ Fast, spatially-resolved thermometry of Si crystals by pump-probe two-photon absorption,” J. Appl. Phys. 106, 013102 (2009).
http://dx.doi.org/10.1063/1.3158063
408.
408. D. G. Cahill and F. Watanabe, “ Thermal conductivity of isotopically pure and Ge-doped Si epitaxial layers from 300 to 550 K,” Phys. Rev. B 70, 235322 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235322
409.
409. S. Dilhaire, G. Pernot, G. Calbris, J. M. Rampnoux, and S. Grauby, “ Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology,” J. Appl. Phys. 110, 114314 (2011).
http://dx.doi.org/10.1063/1.3665129
410.
410. A. J. Schmidt, R. Cheaito, and M. Chiesa, “ A frequency-domain thermoreflectance method for the characterization of thermal properties,” Rev. Sci. Instrum. 80, 094901 (2009).
http://dx.doi.org/10.1063/1.3212673
411.
411. K. T. Regner, D. P. Sellan, Z. Su, C. H. Amon, A. J. H. McGaughey, and J. A. Malen, “ Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance,” Nat. Commun. 4, 1640 (2013).
http://dx.doi.org/10.1038/ncomms2630
412.
412. K. T. Regner, S. Majumdar, and J. A. Malen, “ Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions,” Rev. Sci. Instrum. 84, 064901 (2013).
http://dx.doi.org/10.1063/1.4808055
413.
413. Y. K. Koh and D. Cahill, “ Frequency dependence of the thermal conductivity of semiconductor alloys,” Phys. Rev. B 76, 075207 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075207
414.
414. H.-S. Yang, D. G. Cahill, X. Liu, J. L. Feldman, R. S. Crandall, B. A. Sperling, and J. R. Abelson, “ Anomalously high thermal conductivity of amorphous Si deposited by hot-wire chemical vapor deposition,” Phys. Rev. B 81, 104203 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.104203
415.
415. A. J. Minnich, J. A. Johnson, A. J. Schmidt, K. Esfarjani, M. S. Dresselhaus, K. A. Nelson, and G. Chen, “ Thermal conductivity spectroscopy technique to measure phonon mean free paths,” Phys. Rev. Lett. 107, 095901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.095901
416.
416. M. Highland, B. C. Gundrum, K. K. Yee, R. S. Averback, D. G. Cahill, V. C. Elarde, J. J. Coleman, D. A. Walko, and E. C. Landahl, “ Ballistic-phonon heat conduction at the nanoscale as revealed by time-resolved x-ray diffraction and time-domain thermoreflectance,” Phys. Rev. B 76, 075337 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.075337
417.
417. M. E. Siemens, Q. Li, R. Yang, K. A. Nelson, E. H. Anderson, M. M. Murnane, and H. C. Kapteyn, “ Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams,” Nature Mater. 9, 2630 (2010).
http://dx.doi.org/10.1038/nmat2568
418.
418. A. Minnich, G. Chen, S. Mansoor, and B. Yilbas, “ Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation,” Phys. Rev. B 84, 235207 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.235207
419.
419. A. J. Minnich, “ Determining phonon mean free paths from observations of quasiballistic thermal transport,” Phys. Rev. Lett. 109, 205901 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.205901
420.
420. C. A. da Cruz, W. Li, N. A. Katcho, and N. Mingo, “ Role of phonon anharmonicity in time-domain thermoreflectance measurements,” Appl. Phys. Lett. 101, 083108 (2012).
http://dx.doi.org/10.1063/1.4746275
421.
421. J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. S. Torres, G. Chen, and K. A. Nelson, “ Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane,” Phys. Rev. Lett. 110, 025901 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.025901
422.
422. K. L. Grosse, M.-H. Bae, F. Lian, E. Pop, and W. P. King, “ Nanoscale Joule heating, Peltier cooling and current crowding at graphene metal contacts,” Nat. Nanotechnol. 6, 287290 (2011).
http://dx.doi.org/10.1038/nnano.2011.39
423.
423. S. P. Gurrum, W. P. King, Y. K. Joshi, and K. Ramakrishna, “ Size effect on the thermal conductivity of thin metallic films investigated by scanning Joule expansion microscopy,” ASME Trans. J. Heat Transfer 130, 082403 (2008).
http://dx.doi.org/10.1115/1.2928014
424.
424. P. C. Fletcher, B. Lee, and W. P. King, “ Thermoelectric voltage at a nanometer–scale heated tip point contact,” Nanotechnology 23, 035401 (2012).
http://dx.doi.org/10.1088/0957-4484/23/3/035401
425.
425. K. Goodson and M. Asheghi, “ Near-field optical thermometry,” Microscale Thermophys. Eng. 1, 225235 (1997).
http://dx.doi.org/10.1080/108939597200241
426.
426. P. O. Chapuis, J. J. Greffet, K. Joulain, and S. Volz, “ Heat transfer between a nano-tip and a surface,” Nanotechnology 17, 29782981 (2006).
http://dx.doi.org/10.1088/0957-4484/17/12/026
427.
427. X. Chen and X. Wang, “ Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22, 075204 (2011).
http://dx.doi.org/10.1088/0957-4484/22/7/075204
428.
428. J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J. W. Lee, and G. T. Kim, “ Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method,” Rev. Sci. Instrum. 81, 114901 (2010).
http://dx.doi.org/10.1063/1.3499504
429.
429. K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, “ Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air,” ACS Nano 5, 87008709 (2011).
http://dx.doi.org/10.1021/nn2026325
430.
430. K. Kim, J. Chung, J. Won, O. Kwon, J. S. Lee, S. H. Park, and Y. K. Choi, “ Quantitative scanning thermal microscopy using double scan technique,” Appl. Phys. Lett. 93, 203115 (2008).
http://dx.doi.org/10.1063/1.3033545
431.
431. K. Kim, W. Jeong, W. Lee, and P. Reddy, “ Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry,” ACS Nano 6, 42484257 (2012).
http://dx.doi.org/10.1021/nn300774n
432.
432. P. Reddy, S.-Y. Jang, R. A. Segalman, and A. Majumdar, “ Thermoelectricity in molecular junctions,” Science 315, 15681571 (2007).
http://dx.doi.org/10.1126/science.1137149
433.
433. H.-K. Lyeo, A. A. Khajetoorians, L. Shi, K. P. Pipe, R. J. Ram, A. Shakouri, and C. K. Shih, “ Profiling the thermoelectric power of semiconductor junctions with nanometer resolution,” Science 303, 816818 (2004).
http://dx.doi.org/10.1126/science.1091600
434.
434. Y. Dubi and M. Di Ventra, “ Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions,” Rev. Mod. Phys. 83, 131155 (2011).
http://dx.doi.org/10.1103/RevModPhys.83.131
435.
435. B. Gotsmann and M. A. Lantz, “ Quantized thermal transport across contacts of rough surfaces,” Nature Mat. 12, 5965 (2013).
http://dx.doi.org/10.1038/nmat3460
436.
436. D. Dietzel, S. Chotikaprakhan, B. K. Bein, and J. Pelzl, “ Analysis of active semiconductor structures by combined SThM and SThEM,” J. Phys. IV (France) 125, 8791 (2005).
http://dx.doi.org/10.1051/jp4:2005125020
437.
437. S. Grauby, L. -D. P. Lopez, A. Salhi, E. Puyoo, J.-M. Rampnoux, W. Claeys, and S. Dilhaire, “ Joule expansion imaging techniques on microlectronic devices,” Microelectron. J. 40, 13671372 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.04.016
438.
438. O. Kwon, L. Shi, and A. Majumdar, “ Scanning thermal wave microscopy (STWM),” ASME Trans. J. Heat Transfer 125, 156163 (2003).
http://dx.doi.org/10.1115/1.1518492
439.
439. B. Gotsmann and U. Durig, “ Thermally activated nanowear modes of a polymer surface induced by a heated tip,” Langmuir 20, 14951500 (2004).
http://dx.doi.org/10.1021/la036112w
440.
440. S. Jesse, M. P. Nikiforov, L. T. Germinario, and S. V. Kalinin, “ Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe,” Appl. Phys. Lett. 93, 073104 (2008).
http://dx.doi.org/10.1063/1.2965470
441.
441. W. P. King, S. Saxena, B. A. Nelson, B. L. Weeks, and R. Pitchimani, “ Nanoscale thermal analysis of an energetic material,” Nano Lett. 6, 21452149 (2006).
http://dx.doi.org/10.1021/nl061196p
442.
442. E. A. Corbin and W. P. King, “ Electrical noise characteristics of a doped silicon microcantilever heater-thermometer,” Appl. Phys. Lett. 99, 263107 (2011).
http://dx.doi.org/10.1063/1.3673279
443.
443. U. Duerig, “ Fundamentals of micromechanical thermoelectric sensors,” J. Appl. Phys. 98, 044906 (2005).
http://dx.doi.org/10.1063/1.2006968
444.
444. J. H. Bae, T. Ono, and M. Esashi, “ Scanning probe with an integrated diamond heater element for nanolithography,” Appl. Phys. Lett. 82, 814816 (2003).
http://dx.doi.org/10.1063/1.1541949
445.
445. Z. Dai, W. P. King, and K. Park, “ A 100 nanometer scale resistive heater-thermometer on a silicon cantilever,” Nanotechnology 20, 095301 (2009).
http://dx.doi.org/10.1088/0957-4484/20/9/095301
446.
446. Z. T. Dai, E. A. Corbin, and W. P. King, “ A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements,” Nanotechnology 21, 055503 (2010).
http://dx.doi.org/10.1088/0957-4484/21/5/055503
447.
447. U. Drechsler, N. Burer, M. Despont, U. Durig, B. Gotsmann, F. Robin, and P. Vettiger, “ Cantilevers with nano-heaters for thermomechanical storage application,” Microelectron. Eng. 67–68, 397404 (2003).
http://dx.doi.org/10.1016/S0167-9317(03)00095-9
448.
448. P. C. Fletcher, B. S. Bhatia, Y. Wu, M. A. Shannon, and W. P. King, “ Electrothermal atomic-force microscope cantilever with integrated heater and n-p-n back-to-back diodes,” J. Microelectromech. Syst. 20, 644653 (2011).
http://dx.doi.org/10.1109/JMEMS.2011.2127455
449.
449. A. Jungen, M. Pfenninger, M. Tonteling, C. Stampfer, and C. Hierold, “ Electrothermal effects at the microscale and their consequences on system design,” J. Micromech. Microeng. 16, 16331638 (2006).
http://dx.doi.org/10.1088/0960-1317/16/8/027
450.
450. B. Lee, C. B. Prater, and A. P. King, “ Lorentz force actuation of a heated atomic force microscope cantilever,” Nanotechnology 23, 055709 (2012).
http://dx.doi.org/10.1088/0957-4484/23/5/055709
451.
451. D. W. Lee, T. Ono, T. Abe, and M. Esashi, “ Microprobe array with electrical interconnection for thermal imaging and data storage,” J. Microelectromech. Syst. 11, 215221 (2002).
http://dx.doi.org/10.1109/JMEMS.2002.1007400
452.
452. A. S. Basu, S. McNamara, and Y. B. Gianchandani, “ Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes,” J. Vac. Sci. Technol. B 22, 32173220 (2004).
http://dx.doi.org/10.1116/1.1808732
453.
453. S. Chung, J. R. Felts, D. Wang, W. P. King, and J. J. De Yoreo, “ Temperature-dependence of ink transport during thermal dip-pen nanolithography,” Appl. Phys. Lett. 99, 193101 (2011).
http://dx.doi.org/10.1063/1.3657777
454.
454. J. Duvigneau, H. Schonherr, and G. J. Vancso, “ Scanning thermal lithography of Tailored tert-butyl ester protected carboxylic acid functionalized (meth)acrylate polymer platforms,” ACS Appl. Mater. Interfaces 3, 38553865 (2011).
http://dx.doi.org/10.1021/am200676r
455.
455. J. R. Felts, S. Somnath, R. H. Ewoldt, and W. P. King, “ Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip,” Nanotechnology 23, 215301 (2012).
http://dx.doi.org/10.1088/0957-4484/23/21/215301
456.
456. O. Fenwick, L. Bozec, D. Credgington, A. Hammiche, G. M. Lazzerini, Y. R. Silberberg, and F. Cacialli, “ Thermochemical nanopatterning of organic semiconductors,” Nat. Nanotechnol. 4, 664668 (2009).
http://dx.doi.org/10.1038/nnano.2009.254
457.
457. P. C. Fletcher, J. R. Felts, Z. T. Dai, T. D. Jacobs, H. J. Zeng, W. Lee, P. E. Sheehan, J. A. Carlisle, R. W. Carpick, and W. P. King, “ Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing,” ACS Nano 4, 33383344 (2010).
http://dx.doi.org/10.1021/nn100203d
458.
458. S. Kim, Y. Bastani, H. D. Lu, W. P. King, S. Marder, K. H. Sandhage, A. Gruverman, E. Riedo, and N. Bassiri-Gharb, “ Direct fabrication of arbitrary-shaped ferroelectric nanostructures on plastic, glass, and silicon substrates,” Adv. Mater. 23, 37863790 (2011).
http://dx.doi.org/10.1002/adma.201101991
459.
459. A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, and U. Duerig, “ Probe-based 3-D nanolithography using self-amplified depolymerization polymers,” Adv. Mater. 22, 33613365 (2010).
http://dx.doi.org/10.1002/adma.200904386
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4832615
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4832615
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4832615
2014-01-14
2014-12-19

Abstract

A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10 nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4832615.html;jsessionid=3p274p0dutbma.x-aip-live-03?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4832615&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Nanoscale thermal transport. II. 2003–2012
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4832615
10.1063/1.4832615
SEARCH_EXPAND_ITEM