Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. P. Yue and S. S. Wong, “ On-chip spiral inductors with patterned ground shields for Si-based RF IC's,” IEEE J. Solid-State Circuits 33, 743751 (1998).
2. L. Siegert, G. Fiannaca, and G. Gautier, “ Joule heating temperature prediction for inductor pattern,” in IEEE IIRW Meeting (2011), pp. 121124.
3. K. Joardar, J. Ford, and P. Welch, “ A simple approach to modelling crosstalk in integrated circuits,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (1993), pp. 114117.
4. Y. Zhuang, M. Vroubela, B. Rejaeia, and J. N. Burghartz, “ Integrated RF inductors with micro-patterned NiFe core,” Solid-State Electron. 51, 405413 (2007).
5. N. P. Pham, P. M. Sarro, K. T. Ng, and J. N. Burghartz, “ IC-compatible two-step micromachining process module for RF silicon technology,” IEEE Trans. Electron Devices 48, 17561764 (2001).
6. G. Gautier, M. Capelle, J. Billoué, T. Defforge, P. Leduc, and P. Poveda, “ Porous silicon: Application to RF microelectronic devices,” in Proceedings of EXMATEC Conference (2012).
7. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierroti, J. Rouquerol, and T. Siemieniewska, “ Reporting physisorption data for gas/solid systems Special Reference to the Determination of Surface Area and Porosity,” Pure Appl. Chem. 57, 603619 (1985).
8. D. Brumhead, L. T. Canham, D. M. Seekings, and P. J. Tufton, “ Gravimetric analysis of pore nucleation and propagation in anodised silicon,” Electrochim. Acta 38, 191197 (1993).
9. G. M. O'Halloran, M. Kuhl, P. J. Trimp, and P. J. French, “ The effect of additives on the adsorption properties of porous silicon,” Sens. Actuators A 61, 415420 (1997).
10. A. Nichelatti and T. Nguyen, “ Realization of high aspect ratio interconnections based on macroporous silicon,” in Eurosensors Proceedings (2002), pp. 195196.
11. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “ Formation and application of porous silicon,” Mater. Sci. Eng. 39, 93141 (2002).
12. R. Memming and G. Schwandt, “ Anodic dissolution of silicon in hydrofluoric acid solutions,” Surf. Sci. 4, 109124 (1966).
13. S. Kouassi, G. Gautier, L. Ventura, J. Semai, C. Leborgne, B. Morillon, and M. Roy, “ Innovative electrochemical silicon deep etching technique involving aluminium thermo-migration,” Phys. Status Solidi C 4, 21752179 (2007).
14. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “ The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909966 (1997).
15. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
16. R. L. Smith and S. D. Collins, “ Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1R22 (1992).
17. V. Lehmann, R. Stengl, and A. Luigart, “ On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69/70, 1122 (2000).
18. V. Lehmann and S. Rönnebeck, “ The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146, 29682975 (1999).
19. V. Lehmann and U. Gosele, “ Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett. 58, 856858 (1991).
20. A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G. C. Cardinali, G. Amato, G. Lerondel, and D. Midellino, “ TEM characterisation of porous silicon,” Micron 31, 223230 (2000).
21. H. Unno, K. Imai, and S. Muramoto, “ Dissolution reaction effect on porous-silicon density,” J. Electrochem. Soc. 134, 645648 (1987).
22. X. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic Pub, 2001).
23. J. Nozik and R. Memming, “ Physical chemistry of semi-conductor—Liquid interfaces,” J. Phys. Chem. 100, 1306113078 (1996).
24. H. Föll, M. Leisner, A. Cojocaru, and J. Carstensen, “ Macroporous semiconductors,” Materials 3, 30063076 (2010).
25. G. Gautier, P. Leduc, J. Semai, and L. Ventura, “ Thick microporous silicon isolation layers for integrated RF inductors,” Phys. Status Solidi C 5, 36673670 (2008).
26. J. Chazalviel, F. Ozanam, N. Gabouze, N. fellah, and R. Weherspohn, “ Quantitative analysis of the morphology of macropores on low-doped p-Si,” J. Electrochem. Soc. 149, C511C520 (2002).
27. V. Lehmann, “ The physics of macroporous silicon formation,” Thin Solid Films 255, 14 (1995).
28. S. Desplobain, G. Gautier, N. Gharbage, L. Ventura, and M. Roy, “ Gas management through thick macroporous and mesoporous–macroporous membranes,” Phys. Status Solidi C 5, 38433845 (2008).
29. C. Li, H. Liao, C. Wang, J. Yin, R. Huang, and Y. Wang, “ High-Q integrated inductor using post-CMOS selectively grown porous silicon (SGPS) technique for RFIC applications,” IEEE Electron Devices Lett. 28, 360362 (2007).
30. S. Desplobain, G. Gautier, J. Semai, L. Ventura, and M. Roy, “ Investigations on porous silicon as electrode material in electrochemical capacitors,” Phys. Status Solidi C 4, 21802184 (2007).
31. V. Lehmann, “ The Physics of macropore formation in low doped n-type silicon,” J. Electrochem. Soc. 140, 28362843 (1993).
32. E. Mery, C. Malhaire, B. Remaki, and D. Barbier, “ Electrical study of microfluidic channels isolated with chemically modified porous silicon,” Phys. Status Solidi C 4, 20982102 (2007).
33. G. W. Scherer, “ Recent progress in drying of gels,” J. Non-Cryst. Solids 147–148, 363374 (1992).
34. O. Belmont, D. Bellet, and Y. Bréchet, “ Study of the cracking of highly porous p+ type silicon during drying,” J. Appl. Phys. 79, 75867591 (1996).
35. L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox, and T. P. Lynch, “ Luminescent anodized silicon aerocrystal networks prepared by supercritical drying,” Nature 368, 133135 (1994).
36. G. Amato, V. Bullara, N. Brunetto, and L. Boarino, “ Drying of porous silicon: A Raman, electron microscopy, and photoluminescence study,” Thin Solid Films 276, 204207 (1996).
37. S. Z. You, Y. F. Long, Y. S. Xu, Y. L. Shi, Z. S. Lai, Z. F. Li, W. Lu, and A. Z. Li, “ Fabrication and characterization of thick porous silicon layers for rf circuits,” Sens. Actuators A 108, 117120 (2003).
38. G. E. Ayvazyan, “ Anisotropic warpage of wafers with anodized porous silicon layers,” Phys. Status Solidi A 175, R7R10 (1999).;2-2
39. H.-S. Kim, E. C. Zouzounis, and Y. Xie, “ Effective method for stress reduction in thick porous silicon films,” Appl. Phys. Lett. 80, 22872289 (2002).
40. Y. Watanabe and T. Sakai, “Semiconductor device and method of producing the same,” US patent 3,640,806 (1972).
41. Y. Watanabe, Y. Arita, T. Yokohama, and Y. Igarashi, “ Formation and properties of porous silicon and its application,” J. Electrochem. Soc. 122, 13511355 (1975).
42. V. Yakovtseva, L. Dolgyi, N. Vorozov, N. Kazuchits, V. Bondarenko, M. Balucani, G. Lamedica, L. Franchina, and A. Ferrari, “ Oxidized porous silicon: From dielectric isolation to integrated optical waveguides,” J. Porous Mater. 7, 215222 (2000).
43. J. J. Yon, K. Barla, R. Herino, and G. Bomchil, “ The kinetics and mechanism of oxide layer formation from porous silicon on p-Si substrates,” J. Appl. Phys. 62, 10421048 (1987).
44. D. Molinero, E. Valera, A. Lazaro, D. Girbau, A. Rodriguez, L. Pradell, and R. Alcubilla, “ Properties of oxidized porous silicon as insulator material for RF applications,” in Proceedings of Spanish Conference on Electron Devices (2005), pp. 131133.
45. J. Park and J. Lee, “ Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application,” Mater. Chem. Phys. 82, 134139 (2003).
46. C. Nam and Y. Kwon, “ High-performance planar inductor on thick oxidized porous silicon (OPS) substrate,” IEEE Microw. Guid. Wave Lett. 7, 236238 (1997).
47. K. Barla, R. Herino, and G. Bomchil, “ Stress in oxidized porous silicon layers,” J. Appl. Phys. 59, 439441 (1986).
48. C. Populaire, B. Remaki, M. Armenean, E. Perrin, O. Beuf, H. Saint-Jalmes, and D. Barbier, “ Integrated RF micro-coils on porous silicon,” in Proc. IEEE Sensors (2004), pp. 10641066.
49. P. Y. Y. Kan and T. G. Finstad, “ Oxidation of macroporous silicon for thick thermal insulation,” Mater. Sci. Eng. B 118, 289292 (2005).
50. G. Kaltsas and A. Nassiopoulou, “ Bulk silicon micromachining using porous silicon sacrificial layers,” Microelectron. Eng. 35, 397400 (1997).
51. J. D. L. Shapley and D. A. Barrow, “ Novel patterning method for the electrochemical production of etched silicon,” Thin Solid Films 388, 134137 (2001).
52. I. Celigueta, S. Arana, F. J. Gracia, and E. Castaiio, “ Selective formation of porous silicon using silicon nitride and SU-8 masks for electroluminescence applications,” in Proceedings of the IEEE Spanish Conference on Electron Devices (2005), pp. 331334.
53. H. Kim, K. Chong, and Y. Xie, “ Study of the cross-sectional profile in selective formation of porous silicon,” Appl. Phys. Lett. 83, 27102712 (2003).
54. G. Gautier, L. Ventura, T. Pordié, R. Rogel, and R. Jérisian, “ Fabrication of deep single trenches from N-type macroporous silicon,” Thin Solid Films 487, 283287 (2005).
55. T. Defforge, M. Capelle, F. Tran Van, and G. Gautier, “ Plasma deposited fluoropolymer film mask for local porous silicon formation,” Nanosc. Res. Lett. 7, 344350 (2012).
56. P. Steiner and W. Lang, “ Micromachining applications of porous silicon,” Thin Solid Films 255, 5258 (1995).
57. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure of silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
58. V. P. Parkhutik, “ Residual electrolyte as a factor influencing the electrical properties of porous silicon,” Thin Solid Films 276, 195199 (1996).
59. T. I. Cox, “ Porous silicon layer capacitance,” in Properties of Porous Silicon, edited by L. Canham (Inspec Publication, UK, 1997), pp. 185191, Chap. 6.3.
60. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley-IEEE Press, 2001).
61. M. Adam, Z. J. Horvath, I. Barsony, L. Szolgyemy, E. Vazsonyi, and V. V. Tuyen, “ Investigation of electrical properties of Au/porous Si/Si structures,” Thin Solid Films 255, 266268 (1995).
62. Z. J. Horvath, “ Two-phase structure of plasma-polymerized thiophene-passivated GaAs Schottky-like metal-insulator-semiconductor diodes,” J. Appl. Phys. 68, 58995901 (1990).
63. L. K. Pan, Q. S. Chang, and C. M. Li, “ Estimating the extent of surface oxidation by measuring the porosity dependent dielectrics of oxygenated porous silicon,” Appl. Surf. Sci. 240, 1923 (2005).
64. C. Peng, K. D. Hirschman, and P. M. Fauchet, “ Carrier transport in porous silicon light-emitting devices,” J. Appl. Phys. 80, 295300 (1996).
65. P. A. Badoz, D. Bansahel, G. Bomchil, F. Ferrieu, A. Halimaoui, P. Perret, J. L. Regolini, I. Sagnes, and G. Vincent, “ Characterisation of porous silicon: Structural, optical and electrical properties,” in Material Research Society Symposium Proceedings 1993, Vol. 283, pp. 97108.
66. S. P. Zimin and E. P. Komarov, “ Capacitance of structures with a thick layer of porous silicon,” Tech. Phys. Lett. 22, 808809 (1996).
67. H. S. Kim, Y. H. Xie, M. Devicentis, T. Itoh, and K. A. Jenkins, “ Unoxidized porous Si as an isolation material for mixed-signal integrated circuit applications,” J. Appl. Phys. 93, 42264231 (2003).
68. M. Ben-Chorin, F. Möller, F. Koch, W. Schirmacher, and M. Eberhard, “ Hopping transport on a fractal: ac conductivity of porous silicon,” Phys. Rev. B 51, 21992213 (1995).
69. E. Axelrod, A. Givant, J. Shappir, Y. Feldman, and A. Sa'ar, “ Dielectric relaxation and porosity determination of porous silicon,” J. Non-Cryst. Solids 305, 235242 (2002).
70. L. A. Balagurov, S. C. Bayliss, V. S. Kasatochkin, E. A. Petrova, B. Unal, and D. G. Yarkin, “ Transport of carriers in metal/porous silicon/c-Si device structures based on oxidized porous silicon,” J. Appl. Phys. 90, 45434548 (2001).
71. A. Adamyan, Z. Adamian, and V. Aroutiounian, “ Capacitance method for determination of basic parameters of porous silicon,” Physica E (Amsterdam) 38, 164167 (2007).
72. Y. Lubianiker and I. Balberg, “ Two Meyer-Nedel rules in porous silicon,” Phys. Rev. Lett. 78, 24332436 (1997).
73. L. A. Balagurov, D. G. Yarkin, and E. A. Petrova, “ Electronic transport in porous silicon of low porosity made on a p+ substrate,” Mater. Sci. Res. Eng. B 69–70, 127131 (2000).
74. A. Fejfar, I. Pelant, E. Sipeck, J. Kocka, G. Juska, T. Matsumoto, and Y. Kanemitsu, “ Transport study of sel-supporting porous silicon,” Appl. Phys. Lett. 66, 10981100 (1995).
75. W. H. Lee, L. Choochon, and J. Jang, “ Quantum size effects on the conductivity in porous silicon,” J. Non-Cryst. Solids 198–200, 911914 (1996).
76. M. Bouaïcha, M. Khardani, and B. Bessaïs, “ Correlation of electrical conductivity and photoluminescence in nanoporous silicon,” Mater. Sci. Eng. C 26, 486489 (2006).
77. M. Khardani, M. Bouaïcha, W. Dimassi, M. Zribi, S. Aouida, and B. Bessaïs, “ Electrical conductivity of free-standing mesoporous silicon thin films,” Thin Solid Films 495, 243245 (2006).
78. A. Diligenti, A. Nannini, G. Pennelli, V. Pellegrini, F. Fuso, and M. Allegrini, “ Current transport in free‐standing porous silicon,” Appl. Phys. Lett. 68, 687689 (1996).
79. S. Menard, A. Fèvre, D. Valente, J. Billoué, and G. Gautier, “ Non oxidized porous silicon based power AC switch peripheries,” Nanosc. Res. Lett. 7, 566576 (2012).
80. H. Contopanagos, F. Zacharatos, and A. G. Nassiopoulou, “ RF characterization and isolation properties of mesoporous Si by on-chip waveguide measurements,” Solid State Electron. 52, 17301734 (2008).
81. P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “ Dielectric permittivity of porous Si for use as substrate material in Si-integrated RF devices,” IEEE Trans. Electron Devices 60, 14361443 (2013).
82. Z. Liu, Y. Ding, L. Liu, and Z. Li, “ Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer,” Sens. Actuators A 108, 112116 (2003).
83. R. J. Welty, S. H. Park, P. M. Asbek, K. S. Dancil, and M. J. Sailor, “ Porous silicon technology for RF integrated circuit applications,” in Proceedings IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (1998), pp. 160163.
84. C. Nam and Y. Kwon, “ Coplanar waveguides on silicon substrate with thick oxidized porous silicon (OPS) layer,” IEEE Microw. Guid. Wave Lett. 8, 369371 (1998).
85. R. L. Peterson, I. Itotia, and R. F. Drayton, “ High frequency methods for characterization of oxidized porous silicon,” in Proceedings IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2001), pp. 210214.
86. I. Itotia and R. Drayton, “ Porosity effects on coplanar waveguide porous silicon interconnect,” in Proc. IEEE MTT-S (2002), pp. 681684.
87. P. Sarafis, E. Hourdakis, A. G. Nassiopoulou, C. Roda Neve, K. Ben Ali, and J.-P. Raskin, “ Advanced Si-based substrates for RF passive integration: Comparison between local porous Si layer technology and trap-rich high resistivity Si,” Solid-State Electron. 87, 2733 (2013).
88. D. M. Pozar, Microwave Engineering, 2nd ed. (John Wiley & Sons, 1998), 211 pp.
89. H. Cho and D. Burk, “ A three step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans. Electron Devices 38, 13711375 (1991).
90. X. Huo, P. C. H. Chan, K. J. Chen, and H. C. Luong, “ A physical model for on-chip spiral inductors with accurate substrate modeling,” IEEE Trans. Electron Devices 53, 29422949 (2006).
91. A. S. Royet, R. Cuchet, D. Pellissier, and P. Ancey, “ On the investigation of spiral inductors processed on Si substrates with thick porous Si layers,” in Proceedings ESDERC (2003), pp. 111114.
92. M. Capelle, J. Billoué, G. Gautier, and P. Poveda, “ RF performances of inductors integrated on localised p-type porous silicon regions,” Nanosc. Res. Lett. 7, 523531 (2012).
93. M. Capelle, J. Billoué, P. Poveda, and G. Gautier, “ N-type porous silicon substrates for integrated RF inductors,” IEEE Trans. Electron Devices 58, 41114114 (2011).
94. K. Chong, Y. Xie, K. Yu, D. Huang, and F. Chang, “ High performance inductors integrated on porous silicon,” IEEE Electron. Devices Lett. 26, 9395 (2005).
95. H. S. Kim, D. Zheng, A. J. Becker, and Y. H. Xie, “ Spiral inductors on Si p/p+ substrates with resonant frequency of 20 GHz,” IEEE Electron Devices Lett. 22, 275277 (2001).
96. M. Yu, Y. Chan, L. Laih, and J. Hong, “ Improved microwave performance of spiral inductors on Si Substrates by chemically anodizing a porous silicon layer,” Microw. Opt. Technol. Lett. 26, 232234 (2000).<232::AID-MOP8>3.0.CO;2-7
97. J. Billoué, G. Gautier, and L. Ventura, “ Integration of RF inductors and filters on mesoporous silicon isolation layers,” Phys. Status Solidi C 208, 14491452 (2011).
98. J. Fang, Z. W. Liu, Z. M. Chen, L. T. Liu, and Z. J. Li, “ Realization of an integrated planar LC low-pass filter with modified surface micromachining technology,” in Proceedings IEEE Conference on Electron Devices and Solid State Circuits (2005), pp. 729732.
99. K. Chong and Y. Xie, “ Low capacitance and high isolation bond pas for high-frequency RFICs,” IEEE Electron Devices Lett. 26, 746748 (2005).
100. J. Maxwell, A Treatise on Electricity and Magnetism (Clarendon – Macmillan, Oxford, 1873).
101. K. Yee, “ Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302307 (1966).
102. P. Johns, “ A symmetrical condensed node of the TLM method,” IEEE Trans. Microw. Theory Tech. 35, 370377 (1987).
103. P. Silvester, “ Finite-element analysis of planar microwave networks,” IEEE Trans. Microw. Theory Tech. 21, 104108 (1973).
104. M. Ney, “ Method of moments as applied to electromagnetic problems,” IEEE Trans. Microw. Theory Tech. 20, 245252 (1972).
105. A. Ruehli, “ Inductance calculations in a complex integrated circuit environment,” IBM J. Res. Dev. 16, 470481 (1972).
106. M. Koshiba and M. Suzuki, “ Application of boundary element method to wave guide discontinuities,” IEEE Trans. Microw. Theory Tech. 34, 301307 (1986).
107. T. Itoh and R. Mittra, “ Spectral domain approach for calculating the dispersion characteristics of microstrip lines,” IEEE Trans. Microw. Theory Tech. 21, 496499 (1973).
108. P. Johns and R. Beurle, “ Numerical solution of 2-dimensionnal scattering problems using a transmission-line matrix,” Proc. IEE 118, 12031208 (1971).
109. F. Gardiol, “ Traité d'Electricité,” Volume III, Electromagnétisme, Presses Polytechniques et Universitaires Romandes (1996), p. 301. (In French).
110. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
111. J.-P. Berenger, “ A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363379 (1996).
112. L. Zhao and A. Cangarellis, “ GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids,” IEEE Trans. Microw. Theory Tech. 44, 25552563 (1996).
113. Z. Yang, D. Zhu, M. Zhao, and M. Cao, “ The study of nano-porous optical film with the finite difference time domain method,” J. Opt. A, Pure Appl. Opt. 6, 564568 (2004).
114. D. Swanson and W. Hoefer, Numerical Electromagnetics, Microwave Circuit Modeling Using Electromagnetic Field Simulation (Artech House Publishers, London, 2003), p. 60.
115. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).
116. G. Roach, Green's Functions, 2nd ed. (Cambridge Univ. Press, Cambridge, U.K., 1982).
117. H. Contopanagos and A. Nassiopoulou, “ Design and simulation of integrated inductors on porous silicon in CMOS-compatible processes,” Solid State Electron. 50, 12831290 (2006).
118. R. Courant, “ Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Am. Math. Soc. 49, 123 (1943).
119. R. Mac Withey and L. Vosteen, “ Effects of transient heating on the vibration frequencies of a prototype of the X–15 wing,” NASA TN D-362 (1960).
120. P. Silvester, “ Finite element solution of homogeneous waveguide problems,” Alta Freq. 38, 313317 (1969).
121. A. Najar, A. Al-Jabr, A. Ben Slimane, M. Alsunaidi, T. Khee Ng, and B. Ooi, “ Effective antireflection properties of porous silicon nanowires for photovoltaic applications,” in Electronics, Communications and Photonic Conference (SIEPC) (2013), pp. 14.

Data & Media loading...


Article metrics loading...



The increasing expansion of telecommunication applications leads to the integration of complete system-on-chip associating analog and digital processing units. Besides, the passive elements occupy an increasing silicon footprint, compromising circuit scalability and cost. Moreover, passive components’ performances are limited by the proximity of lossy Si substrate and surrounding metallization. Then, obviously, the characteristics of the substrate become crucial for monolithic radio frequency (RF) systems to reach high performances. So, looking for integrated circuit compatible processes, porous silicon (PS) seems to be a promising candidate as it can provide localized isolating regions from various silicon substrates. In this review, we first present all the possible porous silicon substrates, which can be used for RF devices. In particular, we put the emphasis on the etching conditions, leading to high thickness localized PS layers. The intrinsic electrical properties of porous silicon such as AC electrical conductivity or dielectric constant are also detailed, and the results extracted from the literature are commented. Then, we describe the performances of widespread RF devices, that is, inductors or coplanar waveguides. Finally, we describe methodologies used for predicting RF electrical responses of PS isolated devices, based on electromagnetic simulations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd