1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Porous silicon for electrical isolation in radio frequency devices: A review
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4833575
1.
1. C. P. Yue and S. S. Wong, “ On-chip spiral inductors with patterned ground shields for Si-based RF IC's,” IEEE J. Solid-State Circuits 33, 743751 (1998).
http://dx.doi.org/10.1109/4.668989
2.
2. L. Siegert, G. Fiannaca, and G. Gautier, “ Joule heating temperature prediction for inductor pattern,” in IEEE IIRW Meeting (2011), pp. 121124.
3.
3. K. Joardar, J. Ford, and P. Welch, “ A simple approach to modelling crosstalk in integrated circuits,” in Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) (1993), pp. 114117.
4.
4. Y. Zhuang, M. Vroubela, B. Rejaeia, and J. N. Burghartz, “ Integrated RF inductors with micro-patterned NiFe core,” Solid-State Electron. 51, 405413 (2007).
http://dx.doi.org/10.1016/j.sse.2007.02.013
5.
5. N. P. Pham, P. M. Sarro, K. T. Ng, and J. N. Burghartz, “ IC-compatible two-step micromachining process module for RF silicon technology,” IEEE Trans. Electron Devices 48, 17561764 (2001).
http://dx.doi.org/10.1109/16.936704
6.
6. G. Gautier, M. Capelle, J. Billoué, T. Defforge, P. Leduc, and P. Poveda, “ Porous silicon: Application to RF microelectronic devices,” in Proceedings of EXMATEC Conference (2012).
7.
7. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierroti, J. Rouquerol, and T. Siemieniewska, “ Reporting physisorption data for gas/solid systems Special Reference to the Determination of Surface Area and Porosity,” Pure Appl. Chem. 57, 603619 (1985).
http://dx.doi.org/10.1351/pac198557040603
8.
8. D. Brumhead, L. T. Canham, D. M. Seekings, and P. J. Tufton, “ Gravimetric analysis of pore nucleation and propagation in anodised silicon,” Electrochim. Acta 38, 191197 (1993).
http://dx.doi.org/10.1016/0013-4686(93)85128-L
9.
9. G. M. O'Halloran, M. Kuhl, P. J. Trimp, and P. J. French, “ The effect of additives on the adsorption properties of porous silicon,” Sens. Actuators A 61, 415420 (1997).
http://dx.doi.org/10.1016/S0924-4247(97)80298-1
10.
10. A. Nichelatti and T. Nguyen, “ Realization of high aspect ratio interconnections based on macroporous silicon,” in Eurosensors Proceedings (2002), pp. 195196.
11.
11. H. Föll, M. Christophersen, J. Carstensen, and G. Hasse, “ Formation and application of porous silicon,” Mater. Sci. Eng. 39, 93141 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00090-6
12.
12. R. Memming and G. Schwandt, “ Anodic dissolution of silicon in hydrofluoric acid solutions,” Surf. Sci. 4, 109124 (1966).
http://dx.doi.org/10.1016/0039-6028(66)90071-9
13.
13. S. Kouassi, G. Gautier, L. Ventura, J. Semai, C. Leborgne, B. Morillon, and M. Roy, “ Innovative electrochemical silicon deep etching technique involving aluminium thermo-migration,” Phys. Status Solidi C 4, 21752179 (2007).
http://dx.doi.org/10.1002/pssc.200674416
14.
14. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “ The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909966 (1997).
http://dx.doi.org/10.1063/1.366536
15.
15. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
http://dx.doi.org/10.1016/S0167-5729(99)00012-6
16.
16. R. L. Smith and S. D. Collins, “ Porous silicon formation mechanisms,” J. Appl. Phys. 71, R1R22 (1992).
http://dx.doi.org/10.1063/1.350839
17.
17. V. Lehmann, R. Stengl, and A. Luigart, “ On the morphology and the electrochemical formation mechanism of mesoporous silicon,” Mater. Sci. Eng. B 69/70, 1122 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00286-X
18.
18. V. Lehmann and S. Rönnebeck, “ The physics of macropore formation in low-doped p-type silicon,” J. Electrochem. Soc. 146, 29682975 (1999).
http://dx.doi.org/10.1149/1.1392037
19.
19. V. Lehmann and U. Gosele, “ Porous silicon formation: A quantum wire effect,” Appl. Phys. Lett. 58, 856858 (1991).
http://dx.doi.org/10.1063/1.104512
20.
20. A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G. C. Cardinali, G. Amato, G. Lerondel, and D. Midellino, “ TEM characterisation of porous silicon,” Micron 31, 223230 (2000).
http://dx.doi.org/10.1016/S0968-4328(99)00087-6
21.
21. H. Unno, K. Imai, and S. Muramoto, “ Dissolution reaction effect on porous-silicon density,” J. Electrochem. Soc. 134, 645648 (1987).
http://dx.doi.org/10.1149/1.2100524
22.
22. X. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer Academic Pub, 2001).
23.
23. J. Nozik and R. Memming, “ Physical chemistry of semi-conductor—Liquid interfaces,” J. Phys. Chem. 100, 1306113078 (1996).
http://dx.doi.org/10.1021/jp953720e
24.
24. H. Föll, M. Leisner, A. Cojocaru, and J. Carstensen, “ Macroporous semiconductors,” Materials 3, 30063076 (2010).
http://dx.doi.org/10.3390/ma3053006
25.
25. G. Gautier, P. Leduc, J. Semai, and L. Ventura, “ Thick microporous silicon isolation layers for integrated RF inductors,” Phys. Status Solidi C 5, 36673670 (2008).
http://dx.doi.org/10.1002/pssc.200780143
26.
26. J. Chazalviel, F. Ozanam, N. Gabouze, N. fellah, and R. Weherspohn, “ Quantitative analysis of the morphology of macropores on low-doped p-Si,” J. Electrochem. Soc. 149, C511C520 (2002).
http://dx.doi.org/10.1149/1.1507594
27.
27. V. Lehmann, “ The physics of macroporous silicon formation,” Thin Solid Films 255, 14 (1995).
http://dx.doi.org/10.1016/0040-6090(94)05620-S
28.
28. S. Desplobain, G. Gautier, N. Gharbage, L. Ventura, and M. Roy, “ Gas management through thick macroporous and mesoporous–macroporous membranes,” Phys. Status Solidi C 5, 38433845 (2008).
http://dx.doi.org/10.1002/pssc.200780126
29.
29. C. Li, H. Liao, C. Wang, J. Yin, R. Huang, and Y. Wang, “ High-Q integrated inductor using post-CMOS selectively grown porous silicon (SGPS) technique for RFIC applications,” IEEE Electron Devices Lett. 28, 360362 (2007).
http://dx.doi.org/10.1109/LED.2007.894644
30.
30. S. Desplobain, G. Gautier, J. Semai, L. Ventura, and M. Roy, “ Investigations on porous silicon as electrode material in electrochemical capacitors,” Phys. Status Solidi C 4, 21802184 (2007).
http://dx.doi.org/10.1002/pssc.200674418
31.
31. V. Lehmann, “ The Physics of macropore formation in low doped n-type silicon,” J. Electrochem. Soc. 140, 28362843 (1993).
http://dx.doi.org/10.1149/1.2220919
32.
32. E. Mery, C. Malhaire, B. Remaki, and D. Barbier, “ Electrical study of microfluidic channels isolated with chemically modified porous silicon,” Phys. Status Solidi C 4, 20982102 (2007).
http://dx.doi.org/10.1002/pssc.200674390
33.
33. G. W. Scherer, “ Recent progress in drying of gels,” J. Non-Cryst. Solids 147–148, 363374 (1992).
http://dx.doi.org/10.1016/S0022-3093(05)80645-3
34.
34. O. Belmont, D. Bellet, and Y. Bréchet, “ Study of the cracking of highly porous p+ type silicon during drying,” J. Appl. Phys. 79, 75867591 (1996).
http://dx.doi.org/10.1063/1.362415
35.
35. L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox, and T. P. Lynch, “ Luminescent anodized silicon aerocrystal networks prepared by supercritical drying,” Nature 368, 133135 (1994).
http://dx.doi.org/10.1038/368133a0
36.
36. G. Amato, V. Bullara, N. Brunetto, and L. Boarino, “ Drying of porous silicon: A Raman, electron microscopy, and photoluminescence study,” Thin Solid Films 276, 204207 (1996).
http://dx.doi.org/10.1016/0040-6090(95)08053-8
37.
37. S. Z. You, Y. F. Long, Y. S. Xu, Y. L. Shi, Z. S. Lai, Z. F. Li, W. Lu, and A. Z. Li, “ Fabrication and characterization of thick porous silicon layers for rf circuits,” Sens. Actuators A 108, 117120 (2003).
http://dx.doi.org/10.1016/j.sna.2003.06.004
38.
38. G. E. Ayvazyan, “ Anisotropic warpage of wafers with anodized porous silicon layers,” Phys. Status Solidi A 175, R7R10 (1999).
http://dx.doi.org/10.1002/(SICI)1521-396X(199910)175:23.0.CO;2-2
39.
39. H.-S. Kim, E. C. Zouzounis, and Y. Xie, “ Effective method for stress reduction in thick porous silicon films,” Appl. Phys. Lett. 80, 22872289 (2002).
http://dx.doi.org/10.1063/1.1465130
40.
40. Y. Watanabe and T. Sakai, “Semiconductor device and method of producing the same,” US patent 3,640,806 (1972).
41.
41. Y. Watanabe, Y. Arita, T. Yokohama, and Y. Igarashi, “ Formation and properties of porous silicon and its application,” J. Electrochem. Soc. 122, 13511355 (1975).
http://dx.doi.org/10.1149/1.2134015
42.
42. V. Yakovtseva, L. Dolgyi, N. Vorozov, N. Kazuchits, V. Bondarenko, M. Balucani, G. Lamedica, L. Franchina, and A. Ferrari, “ Oxidized porous silicon: From dielectric isolation to integrated optical waveguides,” J. Porous Mater. 7, 215222 (2000).
http://dx.doi.org/10.1023/A:1009647007232
43.
43. J. J. Yon, K. Barla, R. Herino, and G. Bomchil, “ The kinetics and mechanism of oxide layer formation from porous silicon on p-Si substrates,” J. Appl. Phys. 62, 10421048 (1987).
http://dx.doi.org/10.1063/1.339761
44.
44. D. Molinero, E. Valera, A. Lazaro, D. Girbau, A. Rodriguez, L. Pradell, and R. Alcubilla, “ Properties of oxidized porous silicon as insulator material for RF applications,” in Proceedings of Spanish Conference on Electron Devices (2005), pp. 131133.
45.
45. J. Park and J. Lee, “ Characterization of 10 μm thick porous silicon dioxide obtained by complex oxidation process for RF application,” Mater. Chem. Phys. 82, 134139 (2003).
http://dx.doi.org/10.1016/S0254-0584(03)00187-1
46.
46. C. Nam and Y. Kwon, “ High-performance planar inductor on thick oxidized porous silicon (OPS) substrate,” IEEE Microw. Guid. Wave Lett. 7, 236238 (1997).
http://dx.doi.org/10.1109/75.605489
47.
47. K. Barla, R. Herino, and G. Bomchil, “ Stress in oxidized porous silicon layers,” J. Appl. Phys. 59, 439441 (1986).
http://dx.doi.org/10.1063/1.337036
48.
48. C. Populaire, B. Remaki, M. Armenean, E. Perrin, O. Beuf, H. Saint-Jalmes, and D. Barbier, “ Integrated RF micro-coils on porous silicon,” in Proc. IEEE Sensors (2004), pp. 10641066.
49.
49. P. Y. Y. Kan and T. G. Finstad, “ Oxidation of macroporous silicon for thick thermal insulation,” Mater. Sci. Eng. B 118, 289292 (2005).
http://dx.doi.org/10.1016/j.mseb.2004.12.044
50.
50. G. Kaltsas and A. Nassiopoulou, “ Bulk silicon micromachining using porous silicon sacrificial layers,” Microelectron. Eng. 35, 397400 (1997).
http://dx.doi.org/10.1016/S0167-9317(96)00209-2
51.
51. J. D. L. Shapley and D. A. Barrow, “ Novel patterning method for the electrochemical production of etched silicon,” Thin Solid Films 388, 134137 (2001).
http://dx.doi.org/10.1016/S0040-6090(01)00823-9
52.
52. I. Celigueta, S. Arana, F. J. Gracia, and E. Castaiio, “ Selective formation of porous silicon using silicon nitride and SU-8 masks for electroluminescence applications,” in Proceedings of the IEEE Spanish Conference on Electron Devices (2005), pp. 331334.
53.
53. H. Kim, K. Chong, and Y. Xie, “ Study of the cross-sectional profile in selective formation of porous silicon,” Appl. Phys. Lett. 83, 27102712 (2003).
http://dx.doi.org/10.1063/1.1613995
54.
54. G. Gautier, L. Ventura, T. Pordié, R. Rogel, and R. Jérisian, “ Fabrication of deep single trenches from N-type macroporous silicon,” Thin Solid Films 487, 283287 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.01.080
55.
55. T. Defforge, M. Capelle, F. Tran Van, and G. Gautier, “ Plasma deposited fluoropolymer film mask for local porous silicon formation,” Nanosc. Res. Lett. 7, 344350 (2012).
http://dx.doi.org/10.1186/1556-276X-7-344
56.
56. P. Steiner and W. Lang, “ Micromachining applications of porous silicon,” Thin Solid Films 255, 5258 (1995).
http://dx.doi.org/10.1016/0040-6090(95)91137-B
57.
57. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure of silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
58.
58. V. P. Parkhutik, “ Residual electrolyte as a factor influencing the electrical properties of porous silicon,” Thin Solid Films 276, 195199 (1996).
http://dx.doi.org/10.1016/0040-6090(95)08110-0
59.
59. T. I. Cox, “ Porous silicon layer capacitance,” in Properties of Porous Silicon, edited by L. Canham (Inspec Publication, UK, 1997), pp. 185191, Chap. 6.3.
60.
60. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley-IEEE Press, 2001).
61.
61. M. Adam, Z. J. Horvath, I. Barsony, L. Szolgyemy, E. Vazsonyi, and V. V. Tuyen, “ Investigation of electrical properties of Au/porous Si/Si structures,” Thin Solid Films 255, 266268 (1995).
http://dx.doi.org/10.1016/0040-6090(94)05668-4
62.
62. Z. J. Horvath, “ Two-phase structure of plasma-polymerized thiophene-passivated GaAs Schottky-like metal-insulator-semiconductor diodes,” J. Appl. Phys. 68, 58995901 (1990).
http://dx.doi.org/10.1063/1.346939
63.
63. L. K. Pan, Q. S. Chang, and C. M. Li, “ Estimating the extent of surface oxidation by measuring the porosity dependent dielectrics of oxygenated porous silicon,” Appl. Surf. Sci. 240, 1923 (2005).
http://dx.doi.org/10.1016/j.apsusc.2004.06.022
64.
64. C. Peng, K. D. Hirschman, and P. M. Fauchet, “ Carrier transport in porous silicon light-emitting devices,” J. Appl. Phys. 80, 295300 (1996).
http://dx.doi.org/10.1063/1.362783
65.
65. P. A. Badoz, D. Bansahel, G. Bomchil, F. Ferrieu, A. Halimaoui, P. Perret, J. L. Regolini, I. Sagnes, and G. Vincent, “ Characterisation of porous silicon: Structural, optical and electrical properties,” in Material Research Society Symposium Proceedings 1993, Vol. 283, pp. 97108.
66.
66. S. P. Zimin and E. P. Komarov, “ Capacitance of structures with a thick layer of porous silicon,” Tech. Phys. Lett. 22, 808809 (1996).
67.
67. H. S. Kim, Y. H. Xie, M. Devicentis, T. Itoh, and K. A. Jenkins, “ Unoxidized porous Si as an isolation material for mixed-signal integrated circuit applications,” J. Appl. Phys. 93, 42264231 (2003).
http://dx.doi.org/10.1063/1.1555700
68.
68. M. Ben-Chorin, F. Möller, F. Koch, W. Schirmacher, and M. Eberhard, “ Hopping transport on a fractal: ac conductivity of porous silicon,” Phys. Rev. B 51, 21992213 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.2199
69.
69. E. Axelrod, A. Givant, J. Shappir, Y. Feldman, and A. Sa'ar, “ Dielectric relaxation and porosity determination of porous silicon,” J. Non-Cryst. Solids 305, 235242 (2002).
http://dx.doi.org/10.1016/S0022-3093(02)01097-9
70.
70. L. A. Balagurov, S. C. Bayliss, V. S. Kasatochkin, E. A. Petrova, B. Unal, and D. G. Yarkin, “ Transport of carriers in metal/porous silicon/c-Si device structures based on oxidized porous silicon,” J. Appl. Phys. 90, 45434548 (2001).
http://dx.doi.org/10.1063/1.1407845
71.
71. A. Adamyan, Z. Adamian, and V. Aroutiounian, “ Capacitance method for determination of basic parameters of porous silicon,” Physica E (Amsterdam) 38, 164167 (2007).
http://dx.doi.org/10.1016/j.physe.2006.12.036
72.
72. Y. Lubianiker and I. Balberg, “ Two Meyer-Nedel rules in porous silicon,” Phys. Rev. Lett. 78, 24332436 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.2433
73.
73. L. A. Balagurov, D. G. Yarkin, and E. A. Petrova, “ Electronic transport in porous silicon of low porosity made on a p+ substrate,” Mater. Sci. Res. Eng. B 69–70, 127131 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00230-5
74.
74. A. Fejfar, I. Pelant, E. Sipeck, J. Kocka, G. Juska, T. Matsumoto, and Y. Kanemitsu, “ Transport study of sel-supporting porous silicon,” Appl. Phys. Lett. 66, 10981100 (1995).
http://dx.doi.org/10.1063/1.113584
75.
75. W. H. Lee, L. Choochon, and J. Jang, “ Quantum size effects on the conductivity in porous silicon,” J. Non-Cryst. Solids 198–200, 911914 (1996).
http://dx.doi.org/10.1016/0022-3093(96)00082-8
76.
76. M. Bouaïcha, M. Khardani, and B. Bessaïs, “ Correlation of electrical conductivity and photoluminescence in nanoporous silicon,” Mater. Sci. Eng. C 26, 486489 (2006).
http://dx.doi.org/10.1016/j.msec.2005.10.021
77.
77. M. Khardani, M. Bouaïcha, W. Dimassi, M. Zribi, S. Aouida, and B. Bessaïs, “ Electrical conductivity of free-standing mesoporous silicon thin films,” Thin Solid Films 495, 243245 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.297
78.
78. A. Diligenti, A. Nannini, G. Pennelli, V. Pellegrini, F. Fuso, and M. Allegrini, “ Current transport in free‐standing porous silicon,” Appl. Phys. Lett. 68, 687689 (1996).
http://dx.doi.org/10.1063/1.116592
79.
79. S. Menard, A. Fèvre, D. Valente, J. Billoué, and G. Gautier, “ Non oxidized porous silicon based power AC switch peripheries,” Nanosc. Res. Lett. 7, 566576 (2012).
http://dx.doi.org/10.1186/1556-276X-7-566
80.
80. H. Contopanagos, F. Zacharatos, and A. G. Nassiopoulou, “ RF characterization and isolation properties of mesoporous Si by on-chip waveguide measurements,” Solid State Electron. 52, 17301734 (2008).
http://dx.doi.org/10.1016/j.sse.2008.06.044
81.
81. P. Sarafis, E. Hourdakis, and A. G. Nassiopoulou, “ Dielectric permittivity of porous Si for use as substrate material in Si-integrated RF devices,” IEEE Trans. Electron Devices 60, 14361443 (2013).
http://dx.doi.org/10.1109/TED.2013.2247042
82.
82. Z. Liu, Y. Ding, L. Liu, and Z. Li, “ Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer,” Sens. Actuators A 108, 112116 (2003).
http://dx.doi.org/10.1016/S0924-4247(03)00377-7
83.
83. R. J. Welty, S. H. Park, P. M. Asbek, K. S. Dancil, and M. J. Sailor, “ Porous silicon technology for RF integrated circuit applications,” in Proceedings IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (1998), pp. 160163.
84.
84. C. Nam and Y. Kwon, “ Coplanar waveguides on silicon substrate with thick oxidized porous silicon (OPS) layer,” IEEE Microw. Guid. Wave Lett. 8, 369371 (1998).
http://dx.doi.org/10.1109/75.736246
85.
85. R. L. Peterson, I. Itotia, and R. F. Drayton, “ High frequency methods for characterization of oxidized porous silicon,” in Proceedings IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2001), pp. 210214.
86.
86. I. Itotia and R. Drayton, “ Porosity effects on coplanar waveguide porous silicon interconnect,” in Proc. IEEE MTT-S (2002), pp. 681684.
87.
87. P. Sarafis, E. Hourdakis, A. G. Nassiopoulou, C. Roda Neve, K. Ben Ali, and J.-P. Raskin, “ Advanced Si-based substrates for RF passive integration: Comparison between local porous Si layer technology and trap-rich high resistivity Si,” Solid-State Electron. 87, 2733 (2013).
http://dx.doi.org/10.1016/j.sse.2013.04.026
88.
88. D. M. Pozar, Microwave Engineering, 2nd ed. (John Wiley & Sons, 1998), 211 pp.
89.
89. H. Cho and D. Burk, “ A three step method for the de-embedding of high frequency S-parameter measurements,” IEEE Trans. Electron Devices 38, 13711375 (1991).
http://dx.doi.org/10.1109/16.81628
90.
90. X. Huo, P. C. H. Chan, K. J. Chen, and H. C. Luong, “ A physical model for on-chip spiral inductors with accurate substrate modeling,” IEEE Trans. Electron Devices 53, 29422949 (2006).
http://dx.doi.org/10.1109/TED.2006.885091
91.
91. A. S. Royet, R. Cuchet, D. Pellissier, and P. Ancey, “ On the investigation of spiral inductors processed on Si substrates with thick porous Si layers,” in Proceedings ESDERC (2003), pp. 111114.
92.
92. M. Capelle, J. Billoué, G. Gautier, and P. Poveda, “ RF performances of inductors integrated on localised p-type porous silicon regions,” Nanosc. Res. Lett. 7, 523531 (2012).
http://dx.doi.org/10.1186/1556-276X-7-523
93.
93. M. Capelle, J. Billoué, P. Poveda, and G. Gautier, “ N-type porous silicon substrates for integrated RF inductors,” IEEE Trans. Electron Devices 58, 41114114 (2011).
http://dx.doi.org/10.1109/TED.2011.2164078
94.
94. K. Chong, Y. Xie, K. Yu, D. Huang, and F. Chang, “ High performance inductors integrated on porous silicon,” IEEE Electron. Devices Lett. 26, 9395 (2005).
http://dx.doi.org/10.1109/LED.2004.840546
95.
95. H. S. Kim, D. Zheng, A. J. Becker, and Y. H. Xie, “ Spiral inductors on Si p/p+ substrates with resonant frequency of 20 GHz,” IEEE Electron Devices Lett. 22, 275277 (2001).
http://dx.doi.org/10.1109/55.924840
96.
96. M. Yu, Y. Chan, L. Laih, and J. Hong, “ Improved microwave performance of spiral inductors on Si Substrates by chemically anodizing a porous silicon layer,” Microw. Opt. Technol. Lett. 26, 232234 (2000).
http://dx.doi.org/10.1002/1098-2760(20000820)26:4<232::AID-MOP8>3.0.CO;2-7
97.
97. J. Billoué, G. Gautier, and L. Ventura, “ Integration of RF inductors and filters on mesoporous silicon isolation layers,” Phys. Status Solidi C 208, 14491452 (2011).
http://dx.doi.org/10.1002/pssa.201000027
98.
98. J. Fang, Z. W. Liu, Z. M. Chen, L. T. Liu, and Z. J. Li, “ Realization of an integrated planar LC low-pass filter with modified surface micromachining technology,” in Proceedings IEEE Conference on Electron Devices and Solid State Circuits (2005), pp. 729732.
99.
99. K. Chong and Y. Xie, “ Low capacitance and high isolation bond pas for high-frequency RFICs,” IEEE Electron Devices Lett. 26, 746748 (2005).
http://dx.doi.org/10.1109/LED.2005.854399
100.
100. J. Maxwell, A Treatise on Electricity and Magnetism (Clarendon – Macmillan, Oxford, 1873).
101.
101. K. Yee, “ Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302307 (1966).
http://dx.doi.org/10.1109/TAP.1966.1138693
102.
102. P. Johns, “ A symmetrical condensed node of the TLM method,” IEEE Trans. Microw. Theory Tech. 35, 370377 (1987).
http://dx.doi.org/10.1109/TMTT.1987.1133658
103.
103. P. Silvester, “ Finite-element analysis of planar microwave networks,” IEEE Trans. Microw. Theory Tech. 21, 104108 (1973).
http://dx.doi.org/10.1109/TMTT.1973.1127932
104.
104. M. Ney, “ Method of moments as applied to electromagnetic problems,” IEEE Trans. Microw. Theory Tech. 20, 245252 (1972).
http://dx.doi.org/10.1109/TMTT.1985.1133158
105.
105. A. Ruehli, “ Inductance calculations in a complex integrated circuit environment,” IBM J. Res. Dev. 16, 470481 (1972).
http://dx.doi.org/10.1147/rd.165.0470
106.
106. M. Koshiba and M. Suzuki, “ Application of boundary element method to wave guide discontinuities,” IEEE Trans. Microw. Theory Tech. 34, 301307 (1986).
http://dx.doi.org/10.1109/TMTT.1986.1133330
107.
107. T. Itoh and R. Mittra, “ Spectral domain approach for calculating the dispersion characteristics of microstrip lines,” IEEE Trans. Microw. Theory Tech. 21, 496499 (1973).
http://dx.doi.org/10.1109/TMTT.1973.1128044
108.
108. P. Johns and R. Beurle, “ Numerical solution of 2-dimensionnal scattering problems using a transmission-line matrix,” Proc. IEE 118, 12031208 (1971).
http://dx.doi.org/10.1049/piee.1971.0217
109.
109. F. Gardiol, “ Traité d'Electricité,” Volume III, Electromagnétisme, Presses Polytechniques et Universitaires Romandes (1996), p. 301. (In French).
110.
110. O. Bisi, S. Ossicini, and L. Pavesi, “ Porous silicon: A quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1126 (2000).
111.
111. J.-P. Berenger, “ A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363379 (1996).
http://dx.doi.org/10.1006/jcph.1996.0181
112.
112. L. Zhao and A. Cangarellis, “ GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids,” IEEE Trans. Microw. Theory Tech. 44, 25552563 (1996).
http://dx.doi.org/10.1109/22.554601
113.
113. Z. Yang, D. Zhu, M. Zhao, and M. Cao, “ The study of nano-porous optical film with the finite difference time domain method,” J. Opt. A, Pure Appl. Opt. 6, 564568 (2004).
http://dx.doi.org/10.1088/1464-4258/6/6/012
114.
114. D. Swanson and W. Hoefer, Numerical Electromagnetics, Microwave Circuit Modeling Using Electromagnetic Field Simulation (Artech House Publishers, London, 2003), p. 60.
115.
115. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).
116.
116. G. Roach, Green's Functions, 2nd ed. (Cambridge Univ. Press, Cambridge, U.K., 1982).
117.
117. H. Contopanagos and A. Nassiopoulou, “ Design and simulation of integrated inductors on porous silicon in CMOS-compatible processes,” Solid State Electron. 50, 12831290 (2006).
http://dx.doi.org/10.1016/j.sse.2006.05.021
118.
118. R. Courant, “ Variational methods for the solution of problems of equilibrium and vibrations,” Bull. Am. Math. Soc. 49, 123 (1943).
http://dx.doi.org/10.1090/S0002-9904-1943-07818-4
119.
119. R. Mac Withey and L. Vosteen, “ Effects of transient heating on the vibration frequencies of a prototype of the X–15 wing,” NASA TN D-362 (1960).
120.
120. P. Silvester, “ Finite element solution of homogeneous waveguide problems,” Alta Freq. 38, 313317 (1969).
121.
121. A. Najar, A. Al-Jabr, A. Ben Slimane, M. Alsunaidi, T. Khee Ng, and B. Ooi, “ Effective antireflection properties of porous silicon nanowires for photovoltaic applications,” in Electronics, Communications and Photonic Conference (SIEPC) (2013), pp. 14.
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4833575
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4833575
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4833575
2014-01-02
2014-07-24

Abstract

The increasing expansion of telecommunication applications leads to the integration of complete system-on-chip associating analog and digital processing units. Besides, the passive elements occupy an increasing silicon footprint, compromising circuit scalability and cost. Moreover, passive components’ performances are limited by the proximity of lossy Si substrate and surrounding metallization. Then, obviously, the characteristics of the substrate become crucial for monolithic radio frequency (RF) systems to reach high performances. So, looking for integrated circuit compatible processes, porous silicon (PS) seems to be a promising candidate as it can provide localized isolating regions from various silicon substrates. In this review, we first present all the possible porous silicon substrates, which can be used for RF devices. In particular, we put the emphasis on the etching conditions, leading to high thickness localized PS layers. The intrinsic electrical properties of porous silicon such as AC electrical conductivity or dielectric constant are also detailed, and the results extracted from the literature are commented. Then, we describe the performances of widespread RF devices, that is, inductors or coplanar waveguides. Finally, we describe methodologies used for predicting RF electrical responses of PS isolated devices, based on electromagnetic simulations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4833575.html;jsessionid=16jg46nm6diat.x-aip-live-02?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4833575&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Porous silicon for electrical isolation in radio frequency devices: A review
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4833575
10.1063/1.4833575
SEARCH_EXPAND_ITEM