1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantum confinement in Si and Ge nanostructures: Theory and experiment
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apr2/1/1/10.1063/1.4835095
1.
1. V. Mitin, D. Sementsov, and N. Vagidov, Quantum Mechanics for Nanostructures (Cambridge Univ. Press, Cambridge, 2010).
2.
2. R. Feynman, J. Microelectromech. Syst. 1, 60 (1992).
http://dx.doi.org/10.1109/84.128057
3.
3. W. D. Heiss, Quantum Dots: A Doorway to Nanoscale Physics (Springer, Berlin, 2005).
4.
4. M. Leijnse and K. Flensberg, Phys. Rev. B 84, 140501R (2011).
http://dx.doi.org/10.1103/PhysRevB.84.140501
5.
5. E. G. Barbagiovanni, L. V. Goncharova, and P. J. Simpson, Phys. Rev. B 83, 035112 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.035112
6.
6. L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer, Berlin, 1998).
7.
7. C. Delerue and M. Lannoo, Nanostructures: Theory and Modelling (Springer, Berlin, 2004).
8.
8. P. Harrison, Quantum Wells, Wires, and Dots, 3rd ed. (John Wiley & Sons Ltd., West Sussex, 2009).
9.
9. J. H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction (Cambridge Univ. Press, Cambridge, 1998).
10.
10. F. Flory, L. Escoubas, and G. Berginc, J. Nanophotonics 5, 052502 (2011).
http://dx.doi.org/10.1117/1.3609266
11.
11. R. Rurali, Rev. Mod. Phys. 82, 427 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.427
12.
12. A. D. Yoffe, Adv. Phys. 51, 799 (2002).
http://dx.doi.org/10.1080/00018730110117451
13.
13. J. Fan and P. K. Chu, Small 6, 2080 (2010).
http://dx.doi.org/10.1002/smll.201000543
14.
14. V. A. Belyakov, V. A. Burdov, R. Lockwood, and A. Meldrum, Adv. Opt. Technol. 2008, 279502.
http://dx.doi.org/10.1155/2008/279502
15.
15. C. Cimpean, V. Groenewegen, V. Kuntermann, A. Sommer, and C. Kryschi, Laser Photonics Rev. 3, 138 (2009).
http://dx.doi.org/10.1002/lpor.200810036
16.
16. J. Heitmann, F. Müller, M. Zacharias, and U. Gösele, Adv. Mater. 17, 795 (2005).
http://dx.doi.org/10.1002/adma.200401126
17.
17. D. J. Lockwood, J. Mater. Sci: Mater. Electron. 20, 235 (2009).
http://dx.doi.org/10.1007/s10854-007-9552-6
18.
18. O. B. Gusev, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Semiconductors 47, 183 (2013).
http://dx.doi.org/10.1134/S1063782613020103
19.
19. Z. Zhang, R. Zou, L. Yu, and J. Hu, CRC Crit. Rev. Solid State Sci. 36, 148 (2011).
http://dx.doi.org/10.1080/10408436.2011.589233
20.
20. E. G. Barbagiovanni, D. J. Lockwood, P. J. Simpson, and L. V. Goncharova, J. Appl. Phys. 111, 034307 (2012).
http://dx.doi.org/10.1063/1.3680884
21.
21. B. R. Nag, Physics of Quantum Well Devices (Kluwer Academic Publishers, Dordrecht, 2000).
22.
22. J. D. B. Bradley, P. E. Jessop, and A. P. Knights, Appl. Phys. Lett. 86, 241103.1 (2005).
http://dx.doi.org/10.1063/1.1947379
23.
23. S. S. Iyer and Y. H. Xie, Science 260, 40 (1993).
http://dx.doi.org/10.1126/science.260.5104.40
24.
24. L. Tsybeskov and D. J. Lockwood, Proc. IEEE 97, 1284 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2020711
25.
25. M. S. Hybertsen, Phys. Rev. Lett. 72, 1514 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1514
26.
26. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, Phys. Rev. Lett. 81, 2803 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2803
27.
27. P. Alfaro, A. Miranda, A. E. Ramos, and M. Cruz-Irisson, Braz. J. Phys. 36, 375 (2006).
http://dx.doi.org/10.1590/S0103-97332006000300038
28.
28. T. Takagahara and K. Takeda, Phys. Rev. B 46, 15578 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.15578
29.
29. D. H. Feng, Z. Z. Xu, T. Q. Jia, X. X. Li, and S. Q. Gong, Phys. Rev. B 68, 035334 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.035334
30.
30. C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi, and M. Cazzanelli, Appl. Phys. Lett. 82, 1595 (2003).
http://dx.doi.org/10.1063/1.1558894
31.
31. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewicz, Nat. Nanotechnol. 5, 878 (2010).
http://dx.doi.org/10.1038/nnano.2010.236
32.
32. B. Delley and E. F. Steigmeier, Phys. Rev. B 47, 1397 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.1397
33.
33. A. Miranda, J. L. Cuevas, A. E. Ramos, and M. Cruz-Irisson, Microelectron. J. 40, 796 (2009).
http://dx.doi.org/10.1016/j.mejo.2008.11.034
34.
34. G. F. Grom, D. J. Lockwood, J. P. McCaffrey, H. J. Labbe, P. M. Fauchet, B. White, J. Diener, D. Kovalev, F. Koch, and L. Tsybeskov, Nature 407, 358 (2000).
http://dx.doi.org/10.1038/35030062
35.
35. C. R. Pidgeon, P. J. Phillips, D. Carder, B. N. Murdin, T. Fromherz, D. J. Paul, W. X. Ni, and M. Zhao, Semicond. Sci. Technol. 20, L50 (2005).
http://dx.doi.org/10.1088/0268-1242/20/10/L02
36.
36. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publishing Co., Singapore, 2004).
37.
37. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, Berlin, 2008).
38.
38. S. Mirabella, R. Agosta, G. Franzò, I. Crupi, M. Miritello, R. L. Savio, M. A. D. Stefano, S. D. Marco, F. Simone, and A. Terrasi, J. Appl. Phys. 106, 103505 (2009).
http://dx.doi.org/10.1063/1.3259430
39.
39. S. Glutsch, Excitons in Low-Dimensional Semiconductors: Theory, Numerical Methods, Applications (Springer, Berlin, 2004).
40.
40. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physical and Material Properties, 3rd ed. (Springer, Berlin, 2001).
41.
41. M. L. Brongersma, P. G. Kik, A. Polman, K. S. Min, and H. A. Atwater, Appl. Phys. Lett. 76, 351 (2000).
http://dx.doi.org/10.1063/1.125751
42.
42. S. Lüttjohann, C. Meier, M. Offer, A. Lorke, and H. Wiggers, Europhys. Lett. 79, 37002 (2007).
http://dx.doi.org/10.1209/0295-5075/79/37002
43.
43. L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzò, and F. Priolo, Nature 408, 440 (2000).
http://dx.doi.org/10.1038/35044012
44.
44. V. I. Klimov, Science 290, 314 (2000).
http://dx.doi.org/10.1126/science.290.5490.314
45.
45. Y. Suwa and S. Saito, Phys. Rev. B 79, 233308 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233308
46.
46. S. Saito, Y. Suwa, H. Arimoto, N. Sakuma, D. Hisamoto, H. Uchiyama, J. Yamamoto, T. Sakamizu, T. Mine, S. Kimura, T. Sugawara, and M. Aoki, Appl. Phys. Lett. 95, 241101 (2009).
http://dx.doi.org/10.1063/1.3273367
47.
47. M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photonics 7, 466 (2013).
http://dx.doi.org/10.1038/nphoton.2013.67
48.
48. J. Liu, X. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010).
http://dx.doi.org/10.1364/OL.35.000679
49.
49. R. S. Knox, Theory of Excitons (Academic, New York, 1963).
50.
50. G. D. Scholes and G. Rumbles, Nature Mater. 5, 683 (2006).
http://dx.doi.org/10.1038/nmat1710
51.
51. R. D. Schaller, V. M. Agranovich, and V. I. Klimov, Nat. Phys. 1, 189 (2005).
http://dx.doi.org/10.1038/nphys151
52.
52. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007).
http://dx.doi.org/10.1021/nl071486l
53.
53. A. J. Nozik, Nat. Photonics 6, 272 (2012).
http://dx.doi.org/10.1038/nphoton.2012.78
54.
54. N. A. Hill and K. B. Whaley, Phys. Rev. Lett. 75, 1130 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.1130
55.
55. C. Klingshirn, Semiconductor Optics (Springer, Berlin, 2005).
56.
56. T. Suemoto, K. Tanaka, A. Nakajima, and T. Itakura, Phys. Rev. Lett. 70, 3659 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.3659
57.
57. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane, and D. Brumhead, J. Phys.: Condens. Matter 5, L91 (1993).
http://dx.doi.org/10.1088/0953-8984/5/7/003
58.
58. D. Babic and R. Tsu, Superlattices Microstruct. 22, 581 (1997).
http://dx.doi.org/10.1006/spmi.1996.0444
59.
59. L. W. Wang and A. Zunger, Phys. Rev. Lett. 73, 1039 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1039
60.
60. M. V. R. Krishna and R. A. Friesner, J. Chem. Phys. 96, 873 (1992).
http://dx.doi.org/10.1063/1.462158
61.
61. H. Haken, Nuovo Cimento 3, 1230 (1956).
http://dx.doi.org/10.1007/BF02785005
62.
62. O. Verzelen, R. Ferreira, and G. Bastard, Phys. Rev. B 64, 075315 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.075315
63.
63. J. Martin, F. Cichos, F. Huisken, and C. von Borczyskowski, Nano Lett. 8, 656 (2008).
http://dx.doi.org/10.1021/nl0731163
64.
64. J. Singh, D. Birkedal, V. G. Lyssenko, and J. M. Hvam, Phys. Rev. B 53, 15909 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.15909
65.
65. G. Bacher, R. Weigand, J. Seufert, V. D. Kulakovskii, N. A. Gippius, A. Forchel, K. Leonardi, and D. Hommel, Phys. Rev. Lett. 83, 4417 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.4417
66.
66. E. K. Lee, D. J. Lockwood, J. M. Baribeau, A. M. Bratkovsky, T. I. Kamins, and L. Tsybeskov, Phys. Rev. B 79, 233307 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.233307
67.
67. M. Combescot and O. Betbeder-Matibet, Phys. Rev. B 80, 205313 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.205313
68.
68. A. Wojs and P. Hawrylak, Phys. Rev. B 55, 13066 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.13066
69.
69. T. M. Lu, N. C. Bishop, T. Pluym, J. Means, P. G. Kotula, J. Cederberg, L. A. Tracy, J. Dominguez, M. P. Lilly, and M. S. Carroll, Appl. Phys. Lett. 99, 043101 (2011).
http://dx.doi.org/10.1063/1.3615288
70.
70. S. D. Sarma, R. Sousa, X. Hu, and B. Koiller, Solid State Commun. 133, 737 (2005).
http://dx.doi.org/10.1016/j.ssc.2004.12.037
71.
71. Q. Li, Ł. Cywiński, D. Culcer, X. Hu, and S. Das Sarma, Phys. Rev. B 81, 085313 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085313
72.
72. E. Poem, O. Kenneth, Y. Kodriano, Y. Benny, S. Khatsevich, J. Avron, and D. Gershoni, Phys. Rev. Lett. 107, 087401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.087401
73.
73. L. Liu, Phys. Rev. 126, 1317 (1962).
http://dx.doi.org/10.1103/PhysRev.126.1317
74.
74. R. Winkler, Spin Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, Berlin, 2003).
75.
75. D. Kovalev, H. Heckler, G. Polisski, J. Diener, and F. Koch, Opt. Mater. 17, 35 (2001).
http://dx.doi.org/10.1016/S0925-3467(01)00017-9
76.
76. G. W. Hanson, Fundamentals of Nanoelectronics (Prentice Hall, New Jersey, 2008).
77.
77. W. H. Lim, C. H. Yang, F. A. Zwanenburg, and A. S. Dzurak, Nanotechnology 22, 335704 (2011).
http://dx.doi.org/10.1088/0957-4484/22/33/335704
78.
78. F. A. Zwanenburg, C. E. W. M. van Rijmenam, Y. Fang, C. M. Lieber, and L. P. Kouwenhoven, Nano Lett. 9, 1071 (2009).
http://dx.doi.org/10.1021/nl803440s
79.
79. A. L. Smirl, E. J. Loren, J. Rioux, J. E. Sipe, and H. M. van Driel, in Quantum Electronics and Laser Science Conference (Optical Society of America, 2010), p. 3.
80.
80. C. Simmons, J. Prance, B. V. Bael, T. Koh, Z. Shi, D. Savage, M. Lagally, R. Joynt, M. Friesen, S. Coppersmith, and M. Eriksson, Phys. Rev. Lett. 106, 156804 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156804
81.
81. B. V. Kamenev, G. F. Grom, D. J. Lockwood, J. P. McCafrey, B. Laikhtman, and L. Tsybeskov, Phys. Rev. B 69, 235306 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.235306
82.
82. L. Tsybeskov, G. F. Grom, P. M. Fauchet, J. P. McCaffrey, J.-M. Baribeau, G. I. Sproule, and D. J. Lockwood, Appl. Phys. Lett. 75, 2265 (1999).
http://dx.doi.org/10.1063/1.124985
83.
83. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, Science 299, 1874 (2003).
http://dx.doi.org/10.1126/science.1080313
84.
84. H. E. Schaefer, Nanoscience: The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine (Springer, Berlin, 2010).
85.
85. Nanostructure Science and Technology, edited by A. Korkin, P. S. Krstić, and J. C. Wells (Springer, New York, 2010).
86.
86. R. J. Martín-Palma and A. Lakhtakia, Nanotechnology: A Crash Course (Society of Photo-Optical Instrumentation Engineers, Bellingham, 2010).
87.
87. Single Semiconductor Quantum Dots, edited by P. Michler (Springer, Berlin, 2009).
88.
88. K. J. Vahala, Nature 424, 839 (2003).
http://dx.doi.org/10.1038/nature01939
89.
89. A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaître, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Viña, Nature 457, 291 (2009).
http://dx.doi.org/10.1038/nature07640
90.
90. D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley, Nature 408, 339 (2000).
http://dx.doi.org/10.1038/35042541
91.
91. S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Nature 468, 1084 (2010).
http://dx.doi.org/10.1038/nature09682
92.
92. F. Patolsky and C. M. Lieber, Mater. Today 8, 20 (2005).
http://dx.doi.org/10.1016/S1369-7021(05)00791-1
93.
93. J. L. West and N. J. Halas, Curr. Opin. Biotechnol. 11, 215 (2000).
http://dx.doi.org/10.1016/S0958-1669(00)00082-3
94.
94. S. K. Ray, S. Maikap, W. Banerjee, and S. Das, J. Phys. D: Appl. Phys. 46, 153001 (2013).
http://dx.doi.org/10.1088/0022-3727/46/15/153001
95.
95. V. Aroutiounian, S. Petrosyan, A. Khachatryan, and K. Touryan, J. Appl. Phys. 89, 2268 (2001).
http://dx.doi.org/10.1063/1.1339210
96.
96. A. J. Nozik, Physica E 14, 115 (2002).
http://dx.doi.org/10.1016/S1386-9477(02)00374-0
97.
97. K. Tanabe, Energies 2, 504 (2009).
http://dx.doi.org/10.3390/en20300504
98.
98. H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, J. Zou, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, P. Parkinson, and M. B. Johnston, Prog. Quantum Electron. 35, 23 (2011).
http://dx.doi.org/10.1016/j.pquantelec.2011.03.002
99.
99. W. E. Hagston, T. Stirner, and F. Rasul, J. Appl. Phys. 89, 1087 (2001).
http://dx.doi.org/10.1063/1.1333032
100.
100. Handbook of Luminescent Semiconductor Materials, edited by L. Bergman and J. L. McHale (CRC Press, Boca Raton, 2011).
101.
101. L. Mangolini, J. Vac. Sci. Technol. B 31, 020801 (2013).
http://dx.doi.org/10.1116/1.4794789
102.
102. Z. Xie, E. J. Henderson, O. Dag, W. Wang, J. E. Lofgreen, C. Kübel, T. Scherer, P. M. Brodersen, Z. Z. Gu, and G. A. Ozin, J. Am. Chem. Soc. 133, 5094 (2011).
http://dx.doi.org/10.1021/ja111495x
103.
103. J. Wilcoxon, G. Samara, and P. Provencio, Phys. Rev. B 60, 2704 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.2704
104.
104. D. P. Puzzo, E. J. Henderson, M. G. Helander, Z. Wang, G. A. Ozin, and Z. Lu, Nano Lett. 11, 1585 (2011).
http://dx.doi.org/10.1021/nl1044583
105.
105. M. W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, K. Kern, and O. G. Schmidt, Appl. Phys. Lett. 80, 1279 (2002).
http://dx.doi.org/10.1063/1.1430508
106.
106. G. E. Cirlin, P. Werner, G. Gösele, B. V. Volovik, V. M. Ustinov, and N. N. Ledentsov, Tech. Phys. Lett. 27, 14 (2001).
http://dx.doi.org/10.1134/1.1345154
107.
107. D. Grützmacher, T. Fromherz, C. Dais, J. Stangl, E. Müller, Y. Ekinci, H. H. Solak, H. Sigg, R. T. Lechner, E. Wintersberger, S. Birner, V. Holý, and G. Bauer, Nano Lett. 7, 3150 (2007).
http://dx.doi.org/10.1021/nl0717199
108.
108. Z. Yang, Y. Shi, J. Liu, B. Yan, R. Zhang, Y. Zheng, and K. Wang, Mater. Lett. 58, 3765 (2004).
http://dx.doi.org/10.1016/j.matlet.2004.08.016
109.
109. J. M. Baribeau, X. Wu, N. L. Rowell, and D. J. Lockwood, J. Phys.: Condens. Matter 18, R139 (2006).
http://dx.doi.org/10.1088/0953-8984/18/8/R01
110.
110. J. M. Baribeau, N. L. Rowell, and D. J. Lockwood, “Self-assembled Si1–xGex dots and islands,” in Self-Organized Nanoscale Materials, edited by M. Adachi and D. J. Lockwood (Springer, New York, 2006) pp. 170.
111.
111. J. N. Aqua, I. Berbezier, L. Favre, T. Frisch, and A. Ronda, Phys. Rep. 522, 59 (2013).
http://dx.doi.org/10.1016/j.physrep.2012.09.006
112.
112. M. P. Halsall, H. Omi, and T. Ogino, Appl. Phys. Lett. 81, 2448 (2002).
http://dx.doi.org/10.1063/1.1509120
113.
113. J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge University Press, Cambridge, 1998).
114.
114. K. Brunner, Rep. Prog. Phys. 65, 27 (2002).
http://dx.doi.org/10.1088/0034-4885/65/1/202
115.
115. D. Depla, S. Mahieu, and J. E. Greene, “Sputter deposition processes,” in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd ed., edited by P. M. Martin (Elsevier Inc., Oxford, 2010), pp. 253296.
116.
116. M. D. Strikovski, J. Kim, and S. H. Kolagani, “Plasma energetics in pulsed laser and pulsed electron deposition,” in Springer Handbook of Crystal Growth, edited by G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Berlin, 2010), pp. 11931211.
117.
117. D. Mattox, Handbook of Physical Vapour Deposition (PVD) Processing: Film Formation, Adhesion, Surface Preparation and Contamination Control (Noyes Publications, New Jersey, 1998).
118.
118. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. V. Tendeloo, and V. V. Moshchalkov, Nat. Nanotechnol. 3, 174 (2008).
http://dx.doi.org/10.1038/nnano.2008.7
119.
119. M. Molinari, H. Rinnert, M. Vergnat, and P. Weisbecker, Mater. Sci. Eng., B 101, 186 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00715-8
120.
120. H. Rinnert, M. Vergnat, and A. Burneau, J. Appl. Phys. 89, 237 (2001).
http://dx.doi.org/10.1063/1.1330557
121.
121. G. Seguini, S. Schamm-Chardon, P. Pellegrino, and M. Perego, Appl. Phys. Lett. 99, 082107 (2011).
http://dx.doi.org/10.1063/1.3629813
122.
122. L. Titova, T. Cocker, D. Cooke, X. Wang, A. Meldrum, and F. Hegmann, Phys. Rev. B 83, 085403 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.085403
123.
123. T. van Buuren, L. N. Dinh, L. L. Chase, W. J. Siekhaus, and L. J. Terminello, Phys. Rev. Lett. 80, 3803 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.3803
124.
124. C. Bostedt, T. van Buuren, T. M. Willey, N. Franco, L. J. Terminello, C. Heske, and T. Möller, Appl. Phys. Lett. 84, 4056 (2004).
http://dx.doi.org/10.1063/1.1751616
125.
125. J. Derr, K. Dunn, D. Riabinina, F. Martin, M. Chaker, and F. Rosei, Physica E 41, 668 (2009).
http://dx.doi.org/10.1016/j.physe.2008.11.008
126.
126. T. Orii, M. Hirasawa, T. Seto, N. Aya, and S. Onari, Eur. Phys. J. D 24, 119 (2003).
http://dx.doi.org/10.1140/epjd/e2003-00112-y
127.
127. D. Riabinina, C. Durand, J. Margot, M. Chaker, G. A. Botton, and F. Rosei, Phys. Rev. B 74, 075334 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.075334
128.
128. S. I. Shah, G. H. Jaffari, E. Yassitepe, and B. Ali, “Evaporation: Processes, bulk microstructures, and mechanical properties,” in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd ed., edited by P. M. Martin (Elsevier Inc., Oxford, 2010), pp. 135252.
129.
129. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter (Pergamon Press, New York, 1985), see http://www.srim.org/.
130.
130. L. V. Dao, X. Wen, M. T. T. Do, P. Hannaford, E. C. Cho, Y. H. Cho, and Y. Huang, J. Appl. Phys. 97, 013501 (2005).
http://dx.doi.org/10.1063/1.1823027
131.
131. Y. Maeda, Phys. Rev. B 51, 1658 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.1658
132.
132. S. Hayashi, Y. Kanzawa, M. Kataoka, T. Nagareda, and K. Yamamoto, Z. Phys. D 26, 144 (1993).
http://dx.doi.org/10.1007/BF01429126
133.
133. W. Zhang, S. Zhang, and Y. L. T. Chen, J. Cryst. Growth 311, 1296 (2009).
http://dx.doi.org/10.1016/j.jcrysgro.2008.12.038
134.
134. A. Sa'ar, Y. Reichman, M. Dovrat, D. Krapf, J. Jedrzejewski, and I. Balberg, Nano Lett. 5, 2443 (2005).
http://dx.doi.org/10.1021/nl051740e
135.
135. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Phys. Rev. B 58, 7921 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7921
136.
136. B. Zhang, S. Shrestha, M. A. Green, and G. Conibeer, Appl. Phys. Lett. 96, 261901 (2010).
http://dx.doi.org/10.1063/1.3457864
137.
137. B. Zhang, S. Shrestha, P. Aliberti, M. A. Green, and G. Conibeer, Thin Solid Films 518, 5483 (2010).
http://dx.doi.org/10.1016/j.tsf.2010.04.024
138.
138. M. Fujii, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 57, 2692 (1990).
http://dx.doi.org/10.1063/1.103802
139.
139. M. Dovrat, Y. Goshen, J. Jedrzejewski, I. Balberg, and A. Saar, Phys. Rev. B 69, 155311 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.155311
140.
140. M. Alonso, I. Marcus, M. Garriga, A. G. ni, J. Jedrzejewski, and I. Balberg, Phys. Rev. B 82, 045302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.045302
141.
141. X. Wen, L. V. Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, New J. Phys. 9, 337 (2007).
http://dx.doi.org/10.1088/1367-2630/9/9/337
142.
142. J. S. de Sousa, E. W. S. Caetanoa, J. R. Gonçalves, G. A. Farias, V. N. Freire, and E. F. da Silva, Jr., Appl. Surf. Sci. 190, 166 (2002).
http://dx.doi.org/10.1016/S0169-4332(01)00883-2
143.
143. S. Kim, M. C. Kim, S. Cho, K. J. Kim, H. N. Hwang, and C. C. Hwang, Appl. Phys. Lett. 91, 103113 (2007).
http://dx.doi.org/10.1063/1.2776014
144.
144. S. Furukawa and T. Miyasato, Phys. Rev. B 38, 5726 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.5726
145.
145. X. Wen, L. V. Dao, and P. Hannaford, J. Phys. D: Appl. Phys. 40, 3573 (2007).
http://dx.doi.org/10.1088/0022-3727/40/12/005
146.
146. S. Kim, Y. M. Park, S. H. Choi, K. J. Kim, and D. H. Choi, J. Phys. D: Appl. Phys. 40, 1339 (2007b).
http://dx.doi.org/10.1088/0022-3727/40/5/005
147.
147. B. Julsgaard, Y. M. Lu, P. Balling, and A. N. Larsen, Appl. Phys. Lett. 95, 183107 (2009).
http://dx.doi.org/10.1063/1.3251783
148.
148. P. Clauws, Mater. Sci. Eng., B 36, 213 (1996).
http://dx.doi.org/10.1016/0921-5107(95)01255-9
149.
149. Y. Maeda, N. Tsukamoto, and Y. Yazawa, Appl. Phys. Lett. 59, 3168 (1991).
http://dx.doi.org/10.1063/1.105773
150.
150. Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, Appl. Phys. Lett. 61, 2187 (1992).
http://dx.doi.org/10.1063/1.108290
151.
151. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Appl. Phys. Lett. 74, 1558 (1999).
http://dx.doi.org/10.1063/1.123615
152.
152. B. Zhang, W. Truong, S. Shrestha, M. A. Green, and G. Conibeer, Physica E 45, 207 (2012).
http://dx.doi.org/10.1016/j.physe.2012.08.006
153.
153. W. K. Choi, Y. W. Ho, S. P. Ng, and V. Ng, J. Appl. Phys. 89, 2168 (2001).
http://dx.doi.org/10.1063/1.1342026
154.
154. M. Zacharias and P. M. Fauchet, Appl. Phys. Lett. 71, 380 (1997).
http://dx.doi.org/10.1063/1.119543
155.
155. J. O. Carlsson and P. M. Martin, “Chemical vapor deposition,” in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd ed., edited by P. M. Martin (Elsevier Inc., Oxford, 2010), pp. 314363.
156.
156. L. Martinu, O. Zabeida, and J. E. Klemberg-Sapieha, “Plasma-enhanced chemical vapor deposition of functional coatings,” in Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology, 3rd ed., edited by P. M. Martin (Elsevier Inc., Oxford, 2010), pp. 392465.
157.
157. R. Dhanasekaran, “Growth of semiconductor single crystals from vapor phase,” in Springer Handbook of Crystal Growth, edited by G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Berlin, 2010), pp. 897935.
158.
158. C. Meier, S. Lüttjohann, M. Offer, H. Wiggers, and A. Lorke, Adv. Solid State Phys. 48, 79 (2009).
http://dx.doi.org/10.1007/978-3-540-85859-1_7
159.
159. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).
http://dx.doi.org/10.1063/1.102921
160.
160. Y. Kanemitsu and S. Okamoto, Phys. Rev. B 58, 9652 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.9652
161.
161. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, Phys. Rev. B 48, 4883 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.4883
162.
162. G. Ledoux, J. Gong, F. Huisken, O. Guillois, and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).
http://dx.doi.org/10.1063/1.1485302
163.
163. C. Reynaud, O. Guillois, N. Herlin-Boime, G. Ledoux, and F. Huisken, Mater. Res. Soc. Symp. Proc. 832, F62 (2005).
http://dx.doi.org/10.1557/PROC-832-F6.2
164.
164. F. Iacona, G. Franzo, and C. Spinella, J. Appl. Phys. 87, 1295 (2000).
http://dx.doi.org/10.1063/1.372013
165.
165. L. A. Nesbit, Appl. Phys. Lett. 46, 38 (1985).
http://dx.doi.org/10.1063/1.95842
166.
166. T. V. Torchynska, J. Non-Cryst. Solids 352, 2484 (2006).
http://dx.doi.org/10.1016/j.jnoncrysol.2006.03.022
167.
167. B. Zaknoon, G. Bahir, C. Saguy, and R. Edrei, Nano Lett. 8, 1689 (2008).
http://dx.doi.org/10.1021/nl080625b
168.
168. T. Inokuma, Y. Wakayama, T. Muramoto, R. Aoki, Y. Kurata, and S. Hasegawa, J. Appl. Phys. 83, 2228 (1998).
http://dx.doi.org/10.1063/1.366961
169.
169. N. M. Park, C. J. Choi, T. Y. Seong, and S. J. Park, Phys. Rev. Lett. 86, 1355 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1355
170.
170. D. Wen-Ge, Y. Jing, M. Ling-Hai, W. Shu-Jie, Y. Wei, and F. Guang-Sheng, Commun. Theor. Phys. 55, 688 (2011).
http://dx.doi.org/10.1088/0253-6102/55/4/33
171.
171. W. Yu, J. Y. Zhang, W. G. Ding, and G. S. Fu, Eur. Phys. J. B 57, 53 (2007).
http://dx.doi.org/10.1140/epjb/e2007-00151-2
172.
172. F. A. Reboredo and A. Zunger, Phys. Rev. B 62, R2275 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R2275
173.
173. D. W. Kim, Y. H. Kim, X. Chen, C. H. Lee, S. C. Song, F. E. Prins, D. L. Kwong, and S. Banerjee, J. Vac. Sci. Technol., B 19, 1104 (2001).
http://dx.doi.org/10.1116/1.1387453
174.
174. S. N. M. Mestanza, I. Doi, and N. C. Frateschi, J. Integr. Circuits Syst. 2, 81 (2007). Available at www.sbmicro.org.br/jics/html/artigos/vol2no2/04.pdf.
175.
175. J. Shieh, T. S. Ko, H. L. Chen, B. T. Dai, and T. C. Chu, Chem. Vap. Deposition 10, 265 (2004).
http://dx.doi.org/10.1002/cvde.200306300
176.
176. R. Wei, N. Deng, M. Wang, S. Zhang, and P. Chen, in Proceedings of 2005 5th IEEE Conference on Nanotechnology (2005), Vol. 2.
177.
177. K. W. Sun, S. H. Sue, and C. W. Liu, Physica E 28, 525 (2005).
http://dx.doi.org/10.1016/j.physe.2005.05.063
178.
178. P. Boucaud, V. Le Thanh, S. Sauvage, D. Debarre, D. Bouchier, and J. M. Lourtioz, Thin Solid Films 336, 240 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)01281-4
179.
179. J. Huang, Z. Ye, B. Zhao, X. Ma, Y. Wang, and D. Que, Appl. Phys. Lett. 78, 1858 (2001).
http://dx.doi.org/10.1063/1.1359144
180.
180. I. V. Markov, “Nucleation at surfaces,” in Springer Handbook of Crystal Growth, edited by G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Berlin, 2010), pp. 1752.
181.
181. H. Hirayama and H. Asahi, “Molecular beam epitaxy with gaseous source,” in Handbook of Crystal Growth, edited by D. T. J. Hurle (Elsevier Science, Amsterdam, 1994), pp. 184221.
182.
182. D. Vvedensky, “Epitaxial growth of semiconductors,” in Low-Dimensional Semiconductor Structures, edited by K. Barnham and D. Vvedensky (Cambridge University Press, Cambridge, 2001), pp. 155.
183.
183. O. P. Pchelyakov, Y. B. Bolkhovityanov, A. V. Dvurechenskii, A. I. Nikiforov, A. I. Yakimov, and B. Voigtländer, Thin Solid Films 367, 75 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00667-2
184.
184. E. Søndergård, R. Kofman, P. Cheyssac, and A. Stella, Surf. Sci. 364, 467 (1996).
http://dx.doi.org/10.1016/0039-6028(96)00657-7
185.
185. O. G. Schmidt, C. Lange, K. Eberl, O. Kienzle, and F. Ernst, Appl. Phys. Lett. 71, 2340 (1997).
http://dx.doi.org/10.1063/1.120072
186.
186. H. Baumgärtner, F. Kaesen, H. Gossner, and I. Eisele, Appl. Surf. Sci. 130, 747 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00148-2
187.
187. V. V. Afanasev, M. Badylevich, A. Stesmans, A. Laha, H. J. Osten, and A. Fissel, Appl. Phys. Lett. 95, 102107 (2009).
http://dx.doi.org/10.1063/1.3204019
188.
188. A. Fissel, A. Laha, E. Bugiel, D. Kühne, M. Czernohorsky, R. Dargis, and H. J. Osten, Microelectron. J. 39, 512 (2008).
http://dx.doi.org/10.1016/j.mejo.2007.11.007
189.
189. J. L. Bischoff, H. Mortada, D. Dentel, M. Derivaz, C. Ben Azzouz, A. Akremi, C. Chefi, F. Miguel Morales, M. Herrera, J. Manuel Mánuel, R. Garcia, and M. Diani, Phys. Status Solidi A 209, 657 (2012).
http://dx.doi.org/10.1002/pssa.201100701
190.
190. H. Mortada, D. Dentel, M. Derivaz, J. L. Bischoff, E. Denys, R. Moubah, C. Ulhaq-Bouillet, and J. Werckmann, J. Cryst. Growth 323, 247 (2011).
http://dx.doi.org/10.1016/j.jcrysgro.2010.10.007
191.
191. D. A. Pavlov, P. A. Shilyaev, E. V. Korotkov, and N. O. Krivulin, Tech. Phys. Lett. 36, 548 (2010).
http://dx.doi.org/10.1134/S1063785010060180
192.
192. X. Wang, Z. M. Jiang, H. J. Zhu, F. Lu, D. Huang, C. W. Hu, Y. Chen, Z. Zhu, T. Yao, and X. Liu, Appl. Phys. Lett. 71, 3543 (1997).
http://dx.doi.org/10.1063/1.120385
193.
193. A. A. Shklyaev and M. Ichikawa, Surf. Sci. 514, 19 (2002).
http://dx.doi.org/10.1016/S0039-6028(02)01602-3
194.
194. D. J. Lockwood, N. L. Rowell, I. Berbezier, G. Amiard, A. Ronda, M. Faustini, and D. Grosso, J. Electrochem. Soc. 157, H1160 (2010).
http://dx.doi.org/10.1149/1.3502565
195.
195. A. Konchenko, Y. Nakayama, I. Matsuda, S. Hasegawa, Y. Nakamura, and M. Ichikawa, Phys. Rev. B 73, 113311 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.113311
196.
196. N. L. Rowell, D. J. Lockwood, I. Berbezier, P. D. Szkutnik, and A. Ronda, J. Electrochem. Soc. 156, H913 (2009).
http://dx.doi.org/10.1149/1.3236402
197.
197. D. J. Lockwood, N. L. Rowell, I. Berbezier, G. Amiard, L. Favre, A. Ronda, and D. Grosso, ECS Trans. 28, 33 (2010).
http://dx.doi.org/10.1149/1.3367209
198.
198. M. Nastasi and J. W. Mayer, Ion Implantation and Synthesis of Materials (Springer, Berlin, 2006).
199.
199. C. R. Mokry, P. J. Simpson, and A. P. Knights, J. Appl. Phys. 105, 114301 (2009).
http://dx.doi.org/10.1063/1.3130103
200.
200. S. N. Dedyulin, M. P. Singh, F. S. Razavi, and L. V. Goncharova, Nucl. Instrum. Methods Phys. Res. B 288, 60 (2012).
http://dx.doi.org/10.1016/j.nimb.2012.07.027
201.
201. P. J. Simpson, C. R. Mokry, and A. P. Knights, J. Phys.: Conf. Ser. 265, 012022 (2011).
http://dx.doi.org/10.1088/1742-6596/265/1/012022
202.
202. M. L. Brongersma, A. Polman, K. S. Min, and H. A. Atwater, J. Appl. Phys. 86, 759 (1999).
http://dx.doi.org/10.1063/1.370800
203.
203. S. Guha, S. B. Qadri, R. G. Musket, M. A. Wall, and T. Shimizu-Iwayama, J. Appl. Phys. 88, 3954 (2000).
http://dx.doi.org/10.1063/1.1308096
204.
204. C. Bonafos, B. Colombeau, A. Altibelli, M. Carrada, G. B. Assayag, B. Garrido, M. López, A. Pérez-Rodríguez, J. R. Morante, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 178, 17 (2001).
http://dx.doi.org/10.1016/S0168-583X(01)00497-9
205.
205. C. Bonafos, B. Garrido, M. Lopez, A. Perez-Rodriguez, J. R. Morante, T. Kihn, G. B. Assayag, and A. Claverie, Mater. Sci. Eng., B 70, 380 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00411-0
206.
206. B. Garrido, M. López, O. González, A. Pérez-Rodríguez, J. R. Morante, and C. Bonafos, Appl. Phys. Lett. 77, 3143 (2000).
http://dx.doi.org/10.1063/1.1325392
207.
207. U. Serincan, M. Kulakci, R. Turan, S. Foss, and T. G. Finstad, Nucl. Instrum. Methods Phys. Res. B 254, 87 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.10.081
208.
208. T. S. Iwayama, T. Hama, D. E. Hole, and I. W. Boyd, Vacuum 81, 179185 (2006).
http://dx.doi.org/10.1016/j.vacuum.2006.03.023
209.
209. U. S. Sias, E. C. Moreira, E. Ribeiro, H. Boudinov, L. Amaral, and M. Behar, J. Appl. Phys. 95, 5053 (2004).
http://dx.doi.org/10.1063/1.1691182
210.
210. W. Skorupa, R. A. Yankov, I. E. Tyschenko, H. Fröb, T. Böhme, and K. Leo, Appl. Phys. Lett. 68, 2410 (1996).
http://dx.doi.org/10.1063/1.116150
211.
211. M. Yamamoto, T. Koshikawa, T. Yasue, H. Harima, and K. Kajiyama, Thin Solid Films 369, 100 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)00844-0
212.
212. L. Nikolova, R. G. Saint-Jacques, C. Dahmounea, and G. G. Ross, Surf. Coat. Technol. 203, 2501 (2009).
http://dx.doi.org/10.1016/j.surfcoat.2009.02.061
213.
213. E. P. O'Reilly and J. Robertson, Phys. Rev. B 27, 3780 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.3780
214.
214. A. Stesmans and V. V. Afanas'ev, J. Appl. Phys. 97, 033510 (2005).
http://dx.doi.org/10.1063/1.1818718
215.
215. H. Z. Song and X. M. Bao, Phys. Rev. B 55, 6988 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.6988
216.
216. R. Tohmon, Y. Shimogaichi, H. Mizuno, Y. Ohki, K. Nagasawa, and Y. Hama, Phys. Rev. Lett. 62, 1388 (1989).
http://dx.doi.org/10.1103/PhysRevLett.62.1388
217.
217. S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, Appl. Phys. Lett. 70, 1207 (1997).
http://dx.doi.org/10.1063/1.118275
218.
218. C. J. Nicklaw, M. P. Pagey, S. T. Pantelides, D. M. Fleetwood, R. D. Schrimpf, K. F. Galloway, E. J. Wittig, B. M. Howard, E. Taw, W. H. McNeil, and J. F. Conley, Jr., IEEE Trans. Nucl. Sci. 47, 2269 (2000).
http://dx.doi.org/10.1109/23.903764
219.
219. B. Garrido Fernandez, M. López, C. García, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 91, 798 (2002).
http://dx.doi.org/10.1063/1.1423768
220.
220. D. Pacifici, E. Moreira, G. Franzò, V. Martorino, F. Priolo, and F. Iacona, Phys. Rev. B 65, 144109 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144109
221.
221. M. López, B. Garrido, C. García, P. Pellegrino, A. Pérez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, Appl. Phys. Lett. 80, 1637 (2002).
http://dx.doi.org/10.1063/1.1456970
222.
222. A. Stesmans, J. Appl. Phys. 88, 489 (2000).
http://dx.doi.org/10.1063/1.373684
223.
223. D. I. Tetelbaum, A. N. Mikhaylov, O. N. Gorshkov, A. P. Kasatkin, A. I. Belov, D. M. Gaponova, and S. V. Morozov, Vacuum 78, 519 (2005).
http://dx.doi.org/10.1016/j.vacuum.2005.01.078
224.
224. I. D. Sharp, Q. Xu, D. O. Yi, C. W. Yuan, J. W. Beeman, K. M. Yu, J. W. Ager, D. C. Chrzan, and E. E. Haller, J. Appl. Phys. 100, 114317 (2006).
http://dx.doi.org/10.1063/1.2398727
225.
225. E. G. Barbagiovanni, S. N. Dedyulin, P. J. Simpson, and L. V. Goncharova, Nucl. Instrum. Methods Phys. Res. B 272, 74 (2012b).
http://dx.doi.org/10.1016/j.nimb.2011.01.036
226.
226. K. Hirose, H. Nohira, K. Azuma, and T. Hattori, Prog. Surf. Sci. 82, 3 (2007).
http://dx.doi.org/10.1016/j.progsurf.2006.10.001
227.
227. L. Ding, T. P. Chen, Y. Liu, M. Yang, and J. I. Wong, J. Appl. Phys. 101, 103525 (2007).
http://dx.doi.org/10.1063/1.2730560
228.
228. U. S. Sias, L. Amaral, M. Behar, H. Boudinov, and E. C. Moreira, Nucl. Instrum. Methods Phys. Res. B 250, 178 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.04.104
229.
229. J. Linnros, N. Lalic, A. Galeckas, and V. Grivickas, J. Appl. Phys. 86, 6128 (1999).
http://dx.doi.org/10.1063/1.371663
230.
230. V. I. Klimov, C. J. Schwarza, D. W. McBranch, and C. W. White, Appl. Phys. Lett. 73, 2603 (1998).
http://dx.doi.org/10.1063/1.122519
231.
231. M. V. Minke and K. A. Jackson, J. Non-Cryst. Solids 351, 2310 (2005).
http://dx.doi.org/10.1016/j.jnoncrysol.2005.04.052
232.
232. U. V. Desnica, M. Buljan, P. Dubcek, Z. Siketic, I. B. Radovic, S. Bernstorff, U. Serincan, and R. Turan, Nucl. Instrum. Methods Phys. Res. B 249, 843 (2006).
http://dx.doi.org/10.1016/j.nimb.2006.03.151
233.
233. K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Appl. Phys. Lett. 76, 2244 (2000).
http://dx.doi.org/10.1063/1.126309
234.
234. S. N. M. Mestanza, I. Doi, J. W. Swart, and N. C. Frateschi, J. Mater. Sci. 42, 7757 (2007).
http://dx.doi.org/10.1007/s10853-007-1628-4
235.
235. J. P. Zhao, D. X. Huang, Z. Y. Chen, W. K. Chu, B. Makarenkov, A. J. Jacobson, B. Bahrim, and J. W. Rabalais, J. Appl. Phys. 103, 124304 (2008).
http://dx.doi.org/10.1063/1.2927254
236.
236. C. F. Yu, D. S. Chao, Y. F. Chen, and J. H. Liang, Nucl. Instrum. Methods Phys. Res. B 307, 171 (2013).
http://dx.doi.org/10.1016/j.nimb.2012.12.116
237.
237. L. Rebohle, J. von Borany, R. A. Yankov, W. Skorupa, I. E. Tyschenko, H. Fröb, and K. Leo, Appl. Phys. Lett. 71, 2809 (1997).
http://dx.doi.org/10.1063/1.120143
238.
238. X. L. Wu, T. Gao, G. G. Siu, S. Tong, and M. Bao, Appl. Phys. Lett. 74, 2420 (1999).
http://dx.doi.org/10.1063/1.123867
239.
239. K. S. Min, K. V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, Appl. Phys. Lett. 68, 2511 (1996).
http://dx.doi.org/10.1063/1.115838
240.
240. H. B. Kim, K. H. Chae, C. N. Whang, J. Y. Jeong, M. S. Oh, S. Im, and J. H. Song, J. Lumin. 80, 281 (1998).
http://dx.doi.org/10.1016/S0022-2313(98)00112-4
241.
241. R. Salh, L. Fitting, E. V. Kolesnikova, A. A. Sitnikova, M. V. Zamoryanskaya, B. Schmidt, and H. J. Fitting, Semiconductors 41, 381 (2007).
http://dx.doi.org/10.1134/S1063782607040033
242.
242. J. M. Schmeltzer and J. M. Buriak, “Recent developments in the chemistry and chemical applications of porous silicon,” in The Chemistry of Nanomaterials, edited by C. N. R. Rao, A. Müller, and A. K. Cheetham (Wiley, Weinheim, 2004), Vol. 2, pp. 518547.
243.
243. D. J. Lockwood, Solid State Commun. 92, 101 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90863-X
244.
244. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y. H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, and P. H. Citrin, Phys. Rev. B 52, 4910 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.4910
245.
245. L. T. Canham, T. I. Cox, A. Loni, and A. J. Simons, Appl. Surf. Sci. 102, 436 (1996).
http://dx.doi.org/10.1016/0169-4332(96)00094-3
246.
246. L. Stalmans and J. Poortmans, Prog. Photovoltaics 6, 233 (1998).
http://dx.doi.org/10.1002/(SICI)1099-159X(199807/08)6:4<233::AID-PIP207>3.0.CO;2-D
247.
247. B. Hamilton, Semicond. Sci. Technol. 10, 1187 (1995).
http://dx.doi.org/10.1088/0268-1242/10/9/001
248.
248. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).
http://dx.doi.org/10.1063/1.366536
249.
249. L. Brus, J. Phys. Chem. 98, 3575 (1994).
http://dx.doi.org/10.1021/j100065a007
250.
250. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).
http://dx.doi.org/10.1063/1.103561
251.
251. R. Boukherroub, S. Morin, D. D. M. Wayner, F. Bensebba, G. I. Sproule, J. M. Baribeau, and D. J. Lockwood, Chem. Mater. 13, 2002 (2001).
http://dx.doi.org/10.1021/cm000790b
252.
252. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.197
253.
253. I. Sychugov, R. Juhasz, J. Valenta, and J. Linnros, Phys. Rev. Lett. 94, 087405 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.087405
254.
254. D. J. Lockwood, A. Wang, and B. Bryskiewicz, Solid State Commun. 89, 587 (1994).
http://dx.doi.org/10.1016/0038-1098(94)90169-4
255.
255. L. Z. Kun, K. Y. Lan, C. Hao, H. Ming, and Q. Yu, Chin. Phys. Lett. 22, 984 (2005).
http://dx.doi.org/10.1088/0256-307X/22/4/057
256.
256. Z. Sui, P. P. Leong, I. P. Herman, G. S. Higashi, and H. Temkin, Appl. Phys. Lett. 60, 2086 (1992).
http://dx.doi.org/10.1063/1.107097
257.
257. L. K. Pan, C. Q. Sun, B. K. Tay, T. P. Chen, and S. Li, J. Phys. Chem. B 106, 11725 (2002).
http://dx.doi.org/10.1021/jp0266805
258.
258. C. Q. Sun, L. K. Pan, Y. Q. Fu, B. K. Tay, and S. Li, J. Phys. Chem. B 107, 5113 (2003).
http://dx.doi.org/10.1021/jp0272015
259.
259. R. M'ghaïeth, H. Maâref, I. Mihalcescu, and J. C. Vial, Microelectron. J. 30, 695 (1999).
http://dx.doi.org/10.1016/S0026-2692(99)00013-0
260.
260. D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, and F. Koch, J. Porous Mater. 7, 85 (2000).
http://dx.doi.org/10.1023/A:1009615326854
261.
261. J. C. Vial, A. Bsiesy, F. Gaspard, and R. Herino, Phys. Rev. B 45, 14171 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.14171
262.
262. L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Nature 420, 57 (2002).
http://dx.doi.org/10.1038/nature01141
263.
263. Y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
264.
264. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. F. Feiner, A. Forchel, M. Scheffler, W. Riess, B. J. Ohlsson, U. Gösele, and L. Samuelson, Mater. Today 9, 28 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71651-0
265.
265. W. Lu and C. M. Lieber, J. Phys. D: Appl. Phys. 39, R387 (2006).
http://dx.doi.org/10.1088/0022-3727/39/21/R01
266.
266. N. Wang, Y. Cai, and R. Q. Zhang, Mater. Sci. Eng., R 60, 1 (2008).
http://dx.doi.org/10.1016/j.mser.2008.01.001
267.
267. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
268.
268. H. Adhikari, P. C. McIntyre, A. F. Marshall, and C. E. D. Chidsey, J. Appl. Phys. 102, 094311 (2007).
http://dx.doi.org/10.1063/1.2803893
269.
269. V. Grossi, L. Ottaviano, S. Santucci, and M. Passacantando, J. Non-Cryst. Solids 356, 1988 (2010).
http://dx.doi.org/10.1016/j.jnoncrysol.2010.05.042
270.
270. T. Hanrath and B. A. Korgel, J. Am. Chem. Soc. 124, 1424 (2002).
http://dx.doi.org/10.1021/ja016788i
271.
271. P. Rudolph, “Defect formation during crystal growth from the melt,” in Springer Handbook of Crystal Growth, edited by G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley (Springer, Berlin, 2010), pp. 159201.
272.
272. Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, Nano Lett. 4, 433 (2004).
http://dx.doi.org/10.1021/nl035162i
273.
273. P. K. Sekhar, S. N. Sambandam, D. K. Sood, and S. Bhansali, Nanotechnology 17, 4606 (2006).
http://dx.doi.org/10.1088/0957-4484/17/18/013
274.
274. K. W. Kolasinski, Surface Science: Foundations of Catalysis and Nanoscience, 2nd ed. (Wiley, West Sussex, 2008).
275.
275. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001).
http://dx.doi.org/10.1063/1.1363692
276.
276. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 1471 (2000).
http://dx.doi.org/10.1126/science.287.5457.1471
277.
277. A. Lugstein, M. Steinmair, Y. J. Hyun, G. Hauer, P. Pongratz, and E. Bertagnolli, Nano Lett. 8, 2310 (2008).
http://dx.doi.org/10.1021/nl8011006
278.
278. N. Ozaki, Y. Ohno, and S. Takeda, Appl. Phys. Lett. 73, 3700 (1998).
http://dx.doi.org/10.1063/1.122868
279.
279. B. V. Kamenev, V. Sharma, L. Tsybeskov, and T. I. Kamins, Phys. Status Solidi A 202, 2753 (2005).
http://dx.doi.org/10.1002/pssa.200521024
280.
280. K. Das, A. K. Chakraborty, M. L. NandaGoswami, R. K. Shingha, A. Dhar, K. S. Coleman, and S. K. Ray, J. Appl. Phys. 101, 074307 (2007).
http://dx.doi.org/10.1063/1.2718282
281.
281. X. H. Sun, C. Didychuk, X. T. Zhou, F. Heigl, L. Armelao, T. Regier, R. I. R. Blyth, and T. K. Sham, Can. Light Source 22, 59 (2007). Available at http://www.lightsource.ca/about/pdf/activity_report_2007/22_Sham.pdf.
282.
282. F. Sunqi, Y. Dapeng, Z. Hongzhou, B. Zhigang, D. Yu, H. Qingling, Z. Yinghua, and W. Jingjing, Sci. China, Ser. A 42, 1316 (1999).
http://dx.doi.org/10.1007/BF02876033
283.
283. P. Noé, J. Guignard, P. Gentile, E. Delamadeleine, V. Calvo, P. Ferret, F. Dhalluin, and T. Baron, J. Appl. Phys. 102, 016103 (2007).
http://dx.doi.org/10.1063/1.2751488
284.
284. C. C. Hong, W. J. Liao, and J. G. Hwu, Appl. Phys. Lett. 82, 3916 (2003).
http://dx.doi.org/10.1063/1.1581004
285.
285. A. T. Chu, T. T. N. Thi, T. T. Tran, B. N. Vu, T. T. Pham, V. T. Pham, T. H. Pham, and H. D. Pham, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 035004 (2011).
http://dx.doi.org/10.1088/2043-6262/2/3/035004
286.
286. N. H. Quang, N. T. Truc, and Y. M. Niquet, Comput. Mater. Sci. 44, 21 (2008).
http://dx.doi.org/10.1016/j.commatsci.2008.01.023
287.
287. Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, Appl. Phys. Lett. 72, 1835 (1998).
http://dx.doi.org/10.1063/1.121199
288.
288. C. P. Li, X. H. Sun, N. B. Wong, C. S. Lee, S. T. Lee, and B. K. Teo, Chem. Phys. Lett. 365, 22 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)01375-1
289.
289. S. T. Lee, R. Q. Zhang, and Y. Lifshitz, “Oxide-assisted growth of silicon and related nanowires: Growth mechanism, structure and properties,” in The Chemistry of Nanomaterials, edited by C. N. R. Rao, A. Müller, and A. K. Cheetham (Wiley, Weinheim, 2004), Vol. 1, pp. 308370.
290.
290. R. G. Hobbs, S. Barth, N. Petkov, M. Zirngast, C. Marschner, M. Morris, and J. D. Holmes, J. Am. Chem. Soc. 132, 13742 (2010).
http://dx.doi.org/10.1021/ja1035368
291.
291. Y. Zhang, Y. Tang, N. Wang, C. Lee, I. Bello, and S. Lee, Phys. Rev. B 61, 4518 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.4518
292.
292. S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng., A 286, 16 (2000).
http://dx.doi.org/10.1016/S0921-5093(00)00658-4
293.
293. Y. Yao, F. Li, and S. T. Lee, Chem. Phys. Lett. 406, 381 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.03.027
294.
294. R. Q. Zhang, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15, 635 (2003).
http://dx.doi.org/10.1002/adma.200301641
295.
295. C. P. Li, C. S. Lee, X. L. Ma, N. Wang, R. Q. Zhang, and S. T. Lee, Adv. Mater. 15, 607 (2003).
http://dx.doi.org/10.1002/adma.200304409
296.
296. Y. F. Zhang, Y. H. Tang, C. Lam, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, J. Cryst. Growth 212, 115 (2000b).
http://dx.doi.org/10.1016/S0022-0248(00)00238-4
297.
297. T. K. Sham, S. J. Naftel, P. S. Kim, R. Sammynaiken, Y. H. Tang, I. Coulthard, A. Moewes, J. W. Freeland, Y. F. Hu, and S. T. Lee, Phys. Rev. B 70, 045313 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.045313
298.
298. X. H. Sun, Y. H. Tang, P. Zhang, S. J. Naftel, R. Sammynaiken, T. K. Sham, H. Y. Peng, Y. F. Zhang, N. B. Wong, and S. T. Lee, J. Appl. Phys. 90, 6379 (2001).
http://dx.doi.org/10.1063/1.1417997
299.
299. D. J. Lockwood and A. G. Wang, Solid State Commun. 94, 905 (1995).
http://dx.doi.org/10.1016/0038-1098(95)00186-7
300.
300. H. S. Seo, X. Li, H. D. Um, B. Yoo, J. H. K. K. P. Kim, Y. W. Cho, and J. H. Lee, Mater. Lett. 63, 2567 (2009).
http://dx.doi.org/10.1016/j.matlet.2009.09.005
301.
301. B. Wu, A. Kumar, and S. Pamarthy, J. Appl. Phys. 108, 051101 (2010).
http://dx.doi.org/10.1063/1.3474652
302.
302. K. R. Williams, K. Gupta, and M. Wasilik, J. Microelectromech. Syst. 12, 761 (2003).
http://dx.doi.org/10.1109/JMEMS.2003.820936
303.
303. P. H. Yih, V. Saxena, and A. J. Steckl, Phys. Status Solidi B 202, 605 (1997).
http://dx.doi.org/10.1002/1521-3951(199707)202:1<605::AID-PSSB605>3.0.CO;2-Y
304.
304. M. Sekine, Appl. Surf. Sci. 192, 270 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00031-4
305.
305. G. Jäger-Waldau, H. U. Habermeier, G. Zwicker, and E. Bucher, J. Electron. Mater. 23, 363 (1994).
http://dx.doi.org/10.1007/BF02671215
306.
306. H. Yoshioka, N. Morioka, J. Suda, and T. Kimoto, J. Appl. Phys. 109, 064312 (2011).
http://dx.doi.org/10.1063/1.3559265
307.
307. J. Valenta, R. Juhasz, and J. Linnros, Appl. Phys. Lett. 80, 1070 (2002).
http://dx.doi.org/10.1063/1.1448400
308.
308. A. Wellner, R. E. Palmer, J. G. Zheng, C. J. Kiely, and K. W. Kolasinski, J. Appl. Phys. 91, 3294 (2002).
http://dx.doi.org/10.1063/1.1448394
309.
309. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, Phys. Rev. Lett. 72, 2648 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.2648
310.
310. J. von Behren, T. van Buuren, M. Zacharias, E. H. Chimowitz, and P. M. Fauchet, Solid State Commun. 105, 317 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10099-0
311.
311. Q. Zhang and S. C. Bayliss, J. Appl. Phys. 79, 1351 (1996).
http://dx.doi.org/10.1063/1.361032
312.
312. Y. Kanemitsu, J. Lumin. 100, 209 (2002).
http://dx.doi.org/10.1016/S0022-2313(02)00425-8
313.
313. B. T. Sullivan, D. J. Lockwood, H. J. Labbé, and Z. H. Lu, Appl. Phys. Lett. 69, 3149 (1996).
http://dx.doi.org/10.1063/1.116811
314.
314. B. A. Wilson, C. M. Taylor, and J. P. Harbison, Phys. Rev. B 34, 8733 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.8733
315.
315. D. J. Lockwood, Phase Transitions 68, 151 (1999).
http://dx.doi.org/10.1080/01411599908224517
316.
316. T. Mchedlidze, T. Arguirov, S. Kouteva-Arguirova, G. Jia, M. Kittler, R. Rölver, B. Berghoff, M. Först, D. L. Bätzner, and B. Spangenberg, Thin Solid Films 516, 6800 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.083
317.
317. D. J. Lockwood and L. Tsybeskov, Encyclopedia Nanosci. Nanotechnol. 6, 477 (2004).
318.
318. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Känel, and A. Neels, Phys. Rev. B 78, 041407 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.041407
319.
319. M. Bonfanti, E. Grilli, M. Guzzi, D. Chrastina, G. Isella, H. von Känel, and H. Sigg, Physica E 41, 972 (2009).
http://dx.doi.org/10.1016/j.physe.2008.08.052
320.
320. D. Chrastina, A. Neels, M. Bonfanti, M. Virgilio, G. Isella, E. Grilli, M. Guzzi, G. Grosso, H. Sigg, and H. von Känel, in 2008, 5th IEEE International Conference on Group IV Photonics (2008), p. 194.
321.
321. M. Virgilio, M. Bonfanti, D. Chrastina, A. Neels, G. Isella, E. Grilli, M. Guzzi, G. Grosso, H. Sigg, and H. von Känel, Phys. Rev. B 79, 075323 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075323
322.
322. M. Bollani, E. Müller, S. Signoretti, C. Beeli, G. Isella, M. Kummer, and H. von Känel, Mater. Sci. Eng., B 101, 102 (2003).
http://dx.doi.org/10.1016/S0921-5107(02)00662-1
323.
323. M. J. Süess, L. Carroll, H. Sigg, A. Diaz, D. Chrastina, G. Isella, E. Müller, and R. Spolenak, Mater. Sci. Eng., B 177, 696 (2012).
http://dx.doi.org/10.1016/j.mseb.2011.10.009
324.
324. T. M. Burbaev, V. A. Kurbatov, A. O. Pogosov, M. M. Rzaev, and N. N. Sibel'din, Semiconductors 37, 207 (2003).
http://dx.doi.org/10.1134/1.1548666
325.
325. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, Nature 437, 1334 (2005).
http://dx.doi.org/10.1038/nature04204
326.
326. U. Menczigar, G. Abstreiter, J. Olajos, H. Grimmeiss, H. Kibbel, H. Presting, and E. Kasper, Phys. Rev. B 47, 4099 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.4099
327.
327. P. A. M. Rodrigues, M. A. Araüjo Silva, G. A. Narvaez, F. Cerdeira, and J. C. Bean, Braz. J. Phys. 29, 547 (1999).
http://dx.doi.org/10.1590/S0103-97331999000300020
328.
328. A. Laha, E. Bugiel, M. Jestremski, R. Ranjith, A. Fissel, and H. J. Osten, Nanotechnology 20, 475604 (2009).
http://dx.doi.org/10.1088/0957-4484/20/47/475604
329.
329. Z. H. Lu, J. M. Baribeau, and D. J. Lockwood, J. Appl. Phys. 76, 3911 (1994).
http://dx.doi.org/10.1063/1.357399
330.
330. P. A. M. Rodrigues, M. A. Araüjo Silva, F. Cerdeira, and J. C. Bean, Phys. Rev. B 48, 18024 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.18024
331.
331. S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, Appl. Phys. Lett. 73, 2125 (1998).
http://dx.doi.org/10.1063/1.122399
332.
332. G. G. Qin, S. Y. Ma, Z. C. Ma, W. H. Zong, and Y. Li-ping, Solid State Commun. 106, 329 (1998).
http://dx.doi.org/10.1016/S0038-1098(98)00043-X
333.
333. H. Xiao, S. Huang, J. Zheng, G. Xie, and Y. Xie, Microelectron. Eng. 86, 2342 (2009).
http://dx.doi.org/10.1016/j.mee.2009.04.014
334.
334. S. Huang, H. Xiao, and S. Shou, Appl. Surf. Sci. 255, 4547 (2009).
http://dx.doi.org/10.1016/j.apsusc.2008.11.069
335.
335. B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, J. Appl. Phys. 92, 3564 (2002).
http://dx.doi.org/10.1063/1.1498960
336.
336. C. Ternon, F. Gourbilleau, R. Rizk, and C. Dufour, Physica E 16, 517 (2003).
http://dx.doi.org/10.1016/S1386-9477(02)00632-X
337.
337. E. C. Cho, J. Xia, A. G. Aberle, and M. A. Green, Sol. Energy Mater. Sol. Cells 74, 147 (2002).
http://dx.doi.org/10.1016/S0927-0248(02)00059-4
338.
338. S. Cosentino, M. Miritello, I. Crupi, G. Nicotra, F. Simone, C. Spinella, A. Terrasi, and S. Mirabella, Nanoscale Res. Lett. 8, 128 (2013).
http://dx.doi.org/10.1186/1556-276X-8-128
339.
339. L. Heikkila, T. Kuusela, H. P. Hedman, and H. Ihantola, Appl. Surf. Sci. 133, 84 (1998).
http://dx.doi.org/10.1016/S0169-4332(98)00186-X
340.
340. R. Rölver, O. Winkler, M. Först, B. Spangenberg, and H. Kurz, Microelectron. Reliab. 45, 915 (2005).
http://dx.doi.org/10.1016/j.microrel.2004.11.025
341.
341. R. Rölver, S. Brüninghoff, M. Först, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol., B 23, 3214 (2005).
http://dx.doi.org/10.1116/1.2074867
342.
342. T. Mchedlidze, T. Arguirov, M. Kittler, R. Roelver, B. Berghoff, M. Foerst, and B. Spangenberg, Physica E 38, 152 (2007).
http://dx.doi.org/10.1016/j.physe.2006.12.022
343.
343. Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Solid State Electron. 40, 197 (1996).
http://dx.doi.org/10.1016/0038-1101(95)00245-6
344.
344. L. Tsybeskov and D. J. Lockwood, Self-Organised Growth of Silicon Nanocrystals in Nanocrystalline Si/SiO2 Superlattices, edited by K. Sato, Y. Furukawa, and K. Nakajima (Elsevier, Amsterdam, 2001).
345.
345. D. J. Lockwood, G. F. Grom, P. M. Fauchet, and L. Tsybeskov, J. Crystal Growth 237, 1898 (2002).
http://dx.doi.org/10.1016/S0022-0248(01)02213-8
346.
346. J. M. Wagner, K. Seino, F. Bechstedt, A. Dymiati, J. Mayer, R. Rölver, M. Först, B. Berghoff, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol., A 25, 1500 (2007).
http://dx.doi.org/10.1116/1.2779040
347.
347. R. Rölver, M. Först, O. Winkler, B. Spangenberg, and H. Kurz, J. Vac. Sci. Technol., A 24, 141 (2006).
http://dx.doi.org/10.1116/1.2141620
348.
348. E. F. Steigmeier, R. Morf, D. Grützmacher, H. Auderset, B. Delley, and R. Wessicken, Appl. Phys. Lett. 69, 4165 (1996).
http://dx.doi.org/10.1063/1.116973
349.
349. V. Vinciguerra, G. Franzò, F. Priolo, F. Iacona, and C. Spinella, J. Appl. Phys. 87, 8165 (2000).
http://dx.doi.org/10.1063/1.373513
350.
350. R. Rölver, B. Berghoff, D. L. Bätzner, B. Spangenberg, and H. Kurz, Appl. Phys. Lett. 92, 212108 (2008).
http://dx.doi.org/10.1063/1.2936308
351.
351. Z. H. Lu, J. M. Baribeau, D. J. Lockwood, M. Buchanan, N. Tit, C. Dharma-Wardana, and G. C. Aers, SPIE 3491, 457 (1998).
http://dx.doi.org/10.1117/12.328772
352.
352. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, Phys. Rev. Lett. 76, 539 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.539
353.
353. Z. H. Lu, D. J. Lockwood, and J. M. Baribeau, Nature 378, 258 (1995).
http://dx.doi.org/10.1038/378258a0
354.
354. S. Okamoto and Y. Kanemitsu, Solid State Commun. 103, 573 (1997).
http://dx.doi.org/10.1016/S0038-1098(97)00227-5
355.
355. D. J. Lockwood, M. W. C. Dharma-wardana, Z. H. Lu, D. H. Grozea, P. Carrier, and L. J. Lewis, Mater. Res. Soc. Symp. Proc. 737, F11 (2003).
http://dx.doi.org/10.1557/PROC-737-F1.1
356.
356. Z. H. Lu and D. Grozea, Appl. Phys. Lett. 80, 255 (2002).
http://dx.doi.org/10.1063/1.1433166
357.
357. Y. Kanemitsu, M. Iiboshi, and T. Kushida, J. Lumin. 87, 463 (2000).
http://dx.doi.org/10.1016/S0022-2313(99)00490-1
358.
358. Y. Kanemitsu, Y. Fukunishi, M. Iiboshi, S. Okamoto, and T. Kushida, Physica E 7, 456 (2000).
http://dx.doi.org/10.1016/S1386-9477(99)00357-4
359.
359. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, and J. A. Yarmoff, Phys. Rev. B 38, 6084 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.6084
360.
360. S. Rashkeev, D. Fleetwood, R. Schrimpf, and S. Pantelides, Phys. Rev. Lett. 87, 165506 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.165506
361.
361. G. Hadjisavvas and P. C. Kelires, Physica E 38, 99 (2007).
http://dx.doi.org/10.1016/j.physe.2006.12.009
362.
362. B. Rößner, G. Isella, and H. von Känel, Appl. Phys. Lett. 82, 754 (2003).
http://dx.doi.org/10.1063/1.1541101
363.
363. K. Seino and F. Bechstedt, Semicond. Sci. Technol. 26, 014024 (2011).
http://dx.doi.org/10.1088/0268-1242/26/1/014024
364.
364. C. Q. Sun, T. P. Chen, B. K. Tay, S. Li, H. Huang, Y. B. Zhang, L. K. Pan, S. P. Lau, and X. W. Sun, J. Phys. D: Appl. Phys. 34, 3470 (2001).
http://dx.doi.org/10.1088/0022-3727/34/24/308
365.
365. Y. Kanemitsu, Y. Fukunishi, and T. Kushida, Appl. Phys. Lett. 77, 211 (2000).
http://dx.doi.org/10.1063/1.126927
366.
366. J. Singh, J. Non-Cryst. Solids 299, 444 (2002).
http://dx.doi.org/10.1016/S0022-3093(01)00957-7
367.
367. R. B. Wehrspohn, J. N. Chazalviel, F. Ozanam, and I. Solomon, Eur. Phys. J. B 8, 179 (1999).
http://dx.doi.org/10.1007/s100510050681
368.
368. M. Cardona and F. H. Pollak, Phys. Rev. 142, 530 (1966).
http://dx.doi.org/10.1103/PhysRev.142.530
369.
369. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Éditions de Physique, Les Ulis Cedax, 1988).
370.
370. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1976).
371.
371. H. Haken, Quantum field theory of solids (North-Holland Pub. Co., Amsterdam, 1976).
372.
372. S. Tomić and N. Vukmirović, J. Appl. Phys. 110, 053710 (2011).
http://dx.doi.org/10.1063/1.3631048
373.
373. Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 62, 5109 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5109
374.
374. K. Seino, F. Bechstedt, and P. Kroll, Phys. Rev. B 86, 075312 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.075312
375.
375. M. G. Burt, J. Phys. Condens. Matter 4, 6651 (1992).
http://dx.doi.org/10.1088/0953-8984/4/32/003
376.
376. K. Nehari, M. Lannoo, F. Michelini, N. Cavassilas, M. Bescond, and J. L. Autran, Appl. Phys. Lett. 93, 092103 (2008).
http://dx.doi.org/10.1063/1.2978196
377.
377. T. Takagahara, Phys. Rev. B 36, 9293 (1987).
http://dx.doi.org/10.1103/PhysRevB.36.9293
378.
378. S. Kivelson and C. D. Gelatt, Phys. Rev. B 19, 5160 (1979).
http://dx.doi.org/10.1103/PhysRevB.19.5160
379.
379. F. Alvarez and A. A. Valladares, Rev. Mex. Fis. 48, 528 (2002). Available at http://www.ejournal.unam.mx/rmf/no486/RMF48607.pdf.
380.
380. R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).
381.
381. J. Singh, T. Aoki, and K. Shimakawa, Philos. Mag. B 82, 855 (2002).
http://dx.doi.org/10.1080/13642810110097872
382.
382. X. Y. Lang, W. T. Zheng, and Q. Jiang, IEEE Trans. Nanotechnol. 7, 5 (2008).
http://dx.doi.org/10.1109/TNANO.2007.913426
383.
383. L. Pan, Z. Sun, and C. Sun, Scr. Mater. 60, 1105 (2009).
http://dx.doi.org/10.1016/j.scriptamat.2009.02.046
384.
384. X. Zianni and A. G. Nassiopoulou, J. Appl. Phys. 100, 074312 (2006).
http://dx.doi.org/10.1063/1.2356907
385.
385. L. E. Ramos, H. C. Weissker, J. Furthmüller, and F. Bechstedt, Phys. Status Solidi B 242, 3053 (2005).
http://dx.doi.org/10.1002/pssb.200562229
386.
386. D. B. T. Thoai, Y. Z. Hu, and S. W. Koch, Phys. Rev. B 42, 11261 (1990).
http://dx.doi.org/10.1103/PhysRevB.42.11261
387.
387. L. C. L. Y. Voon and M. Willatzen, The k·p Method: Electronic Properties of Semiconductors (Springer, Berlin, 2009).
388.
388. G. Allan, C. Delerue, and Y. Niquet, Phys. Rev. B 63, 205301 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.205301
389.
389. J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
http://dx.doi.org/10.1103/PhysRev.97.869
390.
390. B. Lassen, R. V. N. Melnik, and M. Willatzen, Commun. Comput. Phys. 6, 699 (2009).
http://dx.doi.org/10.4208/cicp.2009.v6.p699
391.
391. L. Jacak and J. K. M. Korkusiński, Phys. Rev. B 57, 9069 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9069
392.
392. G. Bastard, Phys. Rev. B 24, 5693 (1981).
http://dx.doi.org/10.1103/PhysRevB.24.5693
393.
393. I. M. Kupchak, D. V. Korbutyak, Y. V. Kryuchenko, A. V. Sachenko, I. O. Sokolovskiĭ, and O. M. Sreseli, Semiconductor 40, 94 (2006).
http://dx.doi.org/10.1134/S1063782606010179
394.
394. A. Moskalenko, J. Berakdar, A. Prokofiev, and I. Yassievich, Phys. Rev. B 76, 085427 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085427
395.
395. S. Öğüt, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. 79, 1770 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.1770
396.
396. J. S. de Sousa, H. Wang, G. A. Farias, V. N. Freire, and E. F. da Silva, Jr., Appl. Surf. Sci. 166, 469 (2000).
http://dx.doi.org/10.1016/S0169-4332(00)00477-3
397.
397. A. M. Lepadatu, I. Stavarache, M. L. Ciurea, and V. Iancu, J. Appl. Phys. 107, 033721 (2010).
http://dx.doi.org/10.1063/1.3284083
398.
398. S. Goedecker and M. Teter, Phys. Rev. B 51, 9455 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.9455
399.
399. C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 48, 11024 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.11024
400.
400. N. C. Bacalis and A. D. Zdetsis, J. Math. Chem. 46, 962970 (2009).
http://dx.doi.org/10.1007/s10910-009-9557-x
401.
401. Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, Appl. Phys. Lett. 77, 1182 (2000).
http://dx.doi.org/10.1063/1.1289659
402.
402. M. Nishida, Semicond. Sci. Technol. 21, 443 (2006).
http://dx.doi.org/10.1088/0268-1242/21/4/006
403.
403. N. Tit, Z. H. Yamani, J. Graham, and A. Ayesh, Mater. Chem. Phys. 124, 927 (2010).
http://dx.doi.org/10.1016/j.matchemphys.2010.07.044
404.
404. N. Tit and M. W. C. Dharma-Wardana, J. Appl. Phys. 86, 387 (1999).
http://dx.doi.org/10.1063/1.370743
405.
405. K. Leung and K. B. Whaley, Phys. Rev. B 56, 7455 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.7455
406.
406. F. Trani, G. Cantele, D. Ninno, and G. Iadonisi, Phys. Status Solidi C 2, 3435 (2005).
http://dx.doi.org/10.1002/pssc.200461208
407.
407. M. Nishida, J. Appl. Phys. 98, 023705 (2005).
http://dx.doi.org/10.1063/1.1985978
408.
408. M. Nishida, Phys. Rev. B 59, 15789 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.15789
409.
409. A. A. Prokofiev, A. S. Moskalenko, I. N. Yassievich, W. D. A. M. de Boer, D. Timmerman, H. Zhang, W. J. Buma, and T. Gregorkiewicz, JETP Lett. 90, 758 (2009).
http://dx.doi.org/10.1134/S0021364009240059
410.
410. Z. Pu-Qin, H. Dong-Sheng, and W. Xing-Long, Chin. Phys. Lett. 22, 1492 (2005).
http://dx.doi.org/10.1088/0256-307X/22/6/054
411.
411. W. Pickett, Comput. Phys. Rep. 9, 115 (1989).
http://dx.doi.org/10.1016/0167-7977(89)90002-6
412.
412. L. W. Wang and A. Zunger, J. Phys. Chem. 98, 2158 (1994b).
http://dx.doi.org/10.1021/j100059a032
413.
413. A. Zunger, Phys. Status Solidi B 224, 727 (2001).
http://dx.doi.org/10.1002/(SICI)1521-3951(200104)224:3<727::AID-PSSB727>3.0.CO;2-9
414.
414. C. Bulutay, Phys. Rev. B 76, 205321 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205321
415.
415. G. Bester, J. Phys.: Condens. Matter 21, 023202 (2009).
http://dx.doi.org/10.1088/0953-8984/21/2/023202
416.
416. A. Zunger and L. W. Wang, Appl. Surf. Sci. 102, 350 (1996).
http://dx.doi.org/10.1016/0169-4332(96)00078-5
417.
417. A. J. Read, R. J. Needs, K. J. Nash, L. T. Canham, P. D. J. Calcott, and A. Qteish, Phys. Rev. Lett. 69, 1232 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.1232
418.
418. H. C. Weissker, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 65, 155328 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.155328
419.
419. F. A. Reboredo, A. Franceschetti, and A. Zunger, Appl. Phys. Lett. 75, 2972 (1999).
http://dx.doi.org/10.1063/1.125205
420.
420. A. Franceschetti, L. W. Wang, and A. Zunger, Phys. Rev. Lett. 83, 1269 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.1269
421.
421. A. Franceschetti and A. Zunger, Phys. Rev. Lett. 78, 915 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.915
422.
422. A. Franceschetti and A. Zunger, Phys. Rev. B 62, 2614 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.2614
423.
423. A. V. Gert and I. N. Yassievich, JETP Lett. 97, 87 (2013).
http://dx.doi.org/10.1134/S0021364013020057
424.
424. V. Ranjan, M. Kapoor, and V. A. Singh, J. Phys.: Condens. Matter 14, 6647 (2002).
http://dx.doi.org/10.1088/0953-8984/14/26/305
425.
425. N. L. Rowell, D. J. Lockwood, A. Karmous, P. D. Szkutnik, I. Berbezier, and A. Ronda, Superlattices Microstruct. 44, 305 (2008).
http://dx.doi.org/10.1016/j.spmi.2008.01.011
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4835095
Loading
/content/aip/journal/apr2/1/1/10.1063/1.4835095
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apr2/1/1/10.1063/1.4835095
2014-01-06
2014-08-31

Abstract

The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO, and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include SiN and AlO. Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apr2/1/1/1.4835095.html;jsessionid=5q6mckddtcgli.x-aip-live-03?itemId=/content/aip/journal/apr2/1/1/10.1063/1.4835095&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apr2

Most read this month

Article
content/aip/journal/apr2
Journal
5
3
Loading

Most cited this month

true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum confinement in Si and Ge nanostructures: Theory and experiment
http://aip.metastore.ingenta.com/content/aip/journal/apr2/1/1/10.1063/1.4835095
10.1063/1.4835095
SEARCH_EXPAND_ITEM